

The Department of Chemistry was one of the earliest Centers of post-graduate teaching and research under the Bombay University (1953). Later, the newly formed Karnatak University has trodden the path of more than five decades. Presently, the Department offers four semester Masters (M.Sc.) programme in the three branches of Chemistry viz., Inorganic, Organic & Physical with a unique blend of high quality teaching and rigorous student training.

Infrastructure:

Department is housed in a 30,000 sq.ft two storeyed building, offers an excellent environment for learning. This includes well-furnished classrooms, spacious laboratories, sophisticated instruments, departmental library, journal section and a computer laboratory. These are also supported by specially equipped research laboratories.

Faculty:

The Department has an experienced & dedicated group of faculty members with decades of teaching experience at various levels, who are equally competent in frontier areas of chemical research. This rich and vibrant intellectual pool will transform the budding and ambitious post–graduates into professional chemists, research scholars and inspiring teachers. Many of them have the financial support for research from agencies like DST, UGC, CSIR, AICTE etc.

Students Aid-in Programmes:

Financial aid to students: Every year 5 students get financial aid from the scholarships instituted in the names of former professors namely, Prof. S. Siddappa, Prof. N. S. Biradar and Prof. V. V. Badiger. On an average 10 students get government merit scholarships. In addition to departmental scholarships, private education trusts, namely, Jindal Pvt. Ltd., Mumbai and Dempo Pvt. Ltd., Goa also provide financial assistance to the students. Some research students also get University fellowships, every year.

Gold Medals:

Gold medals are instituted in the names of Prof. S. Siddappa, Prof. V. V. Badiger, Prof. E. S. Jayadevappa, Prof. G. K. N. Reddy, Prof. A. R. Murthy, Prof. S. T. Nandibewoor and Prof. M. V. Kulkarni.

Centrally Aided Programmes:

The Department of Chemistry has been recognized for its potential research output and was selected for additional financial support by the University Grants Commission (UGC), New Delhi and Department of Science & Technology (DST), New Delhi. The details of these special distinctions achieved by the Department are as follows: SAP (DRS)-UGC:1992–1997; SAP II (DRS)–UGC:1998-2003; COSIST-UGC:1999–2004; FIST–DST:2001-2006; SAP III–UGC:2005-2010; FIST II–DST:2007-2012

Facilities in the Department:

The Department has sophisticated instrumental facilities like UV–Visible–, Fluorescence–, FTIR– and NMR–spectrometers, Single Crystal X–ray diffraction instrument,

Confocal microscope, Electrochemical analyser, Potentiostat, Fuel cell work station, Polarimeter, Zeta sizer, Electrospinning machine, Water contact angle instrument, HPLC, CO_2 incubator, -40 to -80 free dryer, Faraday balance and stopped flow accessory. Recently, the UGC–INFLIBNET through the University library has provided access to majority of the international journals and the University library has also provided access to the SciFinderTM database of chemical and bibliographic information. The Department also houses its own departmental library and has procured a large number of text books under the centrally aided programmes which are useful to the post-graduate students, research students and staff and also has a separate periodical section which has chemical abstracts and many national and international journals up to the year 2000.

Special Features:

The Department has established its own employment cell and several national and multinational companies hold campus interviews for our post graduate and research students. It is a matter of pride to note that more than 50% of our students find their placement before completion of the course. The department is proud to have Karnatak University Alumni Association (R) to foster fellowship and to provide a forum to bring together members of KUCAA for their progress and development in chemical sciences.

Basis for Internal Assessment:

Internal assessment marks in theory papers shall be based on tests. The tests may be conducted 8 to 12 weeks after the start of a semester. Internal assessment marks in practicals shall be based on tests. The practical test may be conducted 10 weeks after the start of a semester.

Theory question paper format for CBCS Semester Examinations:

Q: 1 (Compulsory)

Seven sub questions carry two marks each and one sub question to be answered of one mark (2 questions from each unit) 15 marks

Q: 2 to Q: 7

Six questions from four units will be given. Each question carries 15 marks. Any four questions are to be answered. There may be mixing of questions from different units. 15x4 = 60 marks

Total: 75 marks

The other general academic regulations will be same as laid by University

KARNATAK UNIVERSITY, DHARWAD POST-GRADUATE DEPARTMENT OF STUDIES IN CHEMISTRY

M.Sc. DEGREE PROGRAMME IN CHEMISTRY (With effect from 2019-20)

(CBCS) Course Structure and Scheme of Examination:

FIRST SEMESTER

Description of Papers	Credits	No. of Hrs/ week Theory/ Practical	Duration of exam. in Hrs Theory/ Practical	Internal Assessment Marks Theory/ Practical	Marks at the exams.	Total Marks
A. Core Subjects						
PG75T101A: Inorganic Chemistry–I	4	4	3	25	75	100
PG75T102B: Organic Chemistry–I	4	4	3	25	75	100
PG75T103C: Physical Chemistry– I	4	4	3	25	75	100
PG75T104D: Analytical Chemistry	4	4	3	25	75	100
B. Practical						
PG75P101A: Lab Course in Inorganic Chemistry	2	4	4	10	40	50
PG75P102B: Lab Course in Organic Chemistry	2	4	4	10	40	50
PG75P103C: Lab Course in Physical Chemistry	2	4	4	10	40	50
PG75P104D: Lab Course in Analytical Chemistry	2	4	4	10	40	50
Total	24	32	28	140	460	600

SECOND SEMESTER

Description of Papers	Credits	No. of Hrs/ week Theory/ Practical	Duration of exam. in Hrs Theory/ Practical	Internal Assessment Marks Theory/ Practical	Marks at the exams.	Total Marks
A. Core Subjects						
PG75T201A:Inorganic Chemistry–II	4	4	3	25	75	100
PG75T202B: Organic Chemistry–II	4	4	3	25	75	100
PG75T203C: Physical Chemistry–II	4	4	3	25	75	100
B. Elective						
PG75O201A: Applied Inorganic Chemistry	4	4	3	25	75	100
C. Practical						
PG75P201A: Lab Course in Inorganic Chemistry	2	4	4	10	40	50
PG75P202B: Lab Course in Organic Chemistry	2	4	4	10	40	50
PG75P203C: Lab Course in Physical Chemistry	2	4	4	10	40	50
Total	22	28	24	130	420	550

THIRD SEMESTER (INORGANIC CHEMISTRY SPECIALIZATION)

Description of Papers	Credits	No. of Hrs/ week Theory/ Practical	Duration of exam. in Hrs Theory/ Practical	Internal Assessm ent Marks Theory/ Practical	Marks at the exams.	Total Marks
A. Core Subjects						
			1	1	1	
PG75T301A: Advanced Coordination & Bioinorganic Chemistry	4	4	3	25	75	100
PG75T302A: Molecular Spectroscopy	4	4	3	25	75	100
PG75T303A: Selected topics in Inorganic Chemistry	4	4	3	25	75	100
B. Elective						
PG75O302B: Applied Organic Chemistry OR PG75O302C: Applied Physical Chemistry	4	4	3	25	75	100
C. Practical						
PG75P301A: Lab Course in Inorganic Chemistry	2	4	4	10	40	50
PG75P302A: Lab Course in Inorganic Chemistry	2	4	4	10	40	50
PG75P303A: Lab Course in Inorganic Chemistry	2	4	4	10	40	50
Total	22	28	24	130	420	550

THIRD SEMESTER (ORGANIC CHEMISTRY SPECIALIZATION)

Description of Papers A. Core Subjects	Credits	No. of Hrs/ week Theory/ Practical	Duration of exam. in Hrs Theory/ Practical	Internal Assessment Marks Theory/ Practical	Marks at the exams	Total Marks
PG75T301B:Organic spectroscopy	4	4	3	25	75	100
PG75T302B: Stereochemistry and Reaction Mechanism	4	4	3	25	75	100
PG75T303B: Chemistry of Natural Products	4	4	3	25	75	100
B. Elective						
PG75O302B: Applied Organic Chemistry OR PG75O302C: Applied Physical Chemistry	4	4	3	25	75	100
C. Practical				<u> </u>	<u> </u>	
PG75P301B: Lab Course in Organic Chemistry	2	4	4	10	40	50
PG75P302B: Lab Course in Organic Chemistry	2	4	4	10	40	50
PG75P303B: Lab Course in Organic Chemistry	2	4	4	10	40	50
Total	22	28	24	130	420	550

THIRD SEMESTER (PHYSICAL CHEMISTRY SPECIALIZATION)

Description of Papers	Credits	No. of Hrs/ week Theory/ Practical	Duration of exam. in Hrs Theory/ Practical	Internal Assessm ent Marks Theory/ Practical	Marks at the exams.	Total Marks
A. Core Subjects						
PG75T301C : Quantum Mechanics, Group Theory & Diffraction.	4	4	3	25	75	100
PG75T302C: Spectroscopy & Voltammetry.	4	4	3	25	75	100
PG75T303C: Statistical Mechanics & Polymer Chemistry.	4	4	3	25	75	100
B. Elective						
PG75O302B: Applied Organic Chemistry OR PG75O302C: Applied Physical Chemistry	4	4	3	25	75	100
C. Practical	1	I	1	I	I	1
PG75P301C : Lab Course in Physical Chemistry	2	4	4	10	40	50
PG75P302C: Lab Course in Physical Chemistry	2	4	4	10	40	50
PG75P303C: Lab Course in Physical Chemistry	2	4	4	10	40	50
Total	22	28	24	130	420	550

THIRD SEMESTER

(ANALYTICAL CHEMISTRY SPECIALIZATION)

Description of Papers	Credits	No. of Hrs/ week Theory/ Practical	Duration of exam. in Hrs Theory/ Practical	Internal Assessm ent Marks Theory/	Marks at the exams.	Total Marks
A. Core Subjects				Practical		
PG75T301D: Instrumental Methods of Analysis	4	4	3	25	75	100
PG75T302D: Molecular Spectroscopy	4	4	3	25	75	100
PG75T303D: Selected Topics in Analytical Chemistry–I	4	4	3	25	75	100
B. Elective						
PG75O302B: Applied Organic Chemistry OR PG75O302C: Applied Physical	4	4	3	25	75	100
Chemistry C. Practical						
PG75P301D: Lab Course in Analytical Chemistry–I	2	4	4	10	40	50
PG75P302D: Lab course in Analytical Chemistry–II	2	4	4	10	40	50
PG75P303D: Lab course in Analytical Chemistry–III	2	4	4	10	40	50
Total	22	28	24	130	420	550

FOURTH SEMESTER

(INORGANIC CHEMISTRY SPECIALIZATION)

Description of Papers A. Core Subjects	Credits	No. of Hrs/ week Theory/ Practical	Duration of exam. in Hrs Theory/ Practical	Internal Assessment Marks Theory/ Practical	Marks at the exams.	Total Marks
PG75T401A : Instrumental Methods of Analysis.	4	4	3	25	75	100
PG75T402A: Material, Nuclear and Environmental Chemistry	4	4	3	25	75	100
PG75T403A: Organometallic and Solid State Chemistry	4	4	3	25	75	100
PG75D404A: Project Work [*]	6	4	8	25	125*	150
Practical	-1		L		1	<u> </u>
PG75P401A: Lab Course in Inorganic Chemistry	2	4	4	10	40	50
PG75P402A: Lab Course in Inorganic Chemistry	2	4	4	10	40	50
PG75P403A: Lab Course in Inorganic Chemistry	2	4	4	10	40	50
Total	24	28	21	130	395	600

* Project Evaluation: Dissertation – 75 Marks Presentation/ - 50 Marks Viva-Voce

FOURTH SEMESTER (ORGANIC CHEMISTRY SPECIALIZATION)

Description of Papers	Credits	No. of Hrs/ week Theory/ Practical	Duration of exam. in Hrs Theory/ Practical	Internal Assessment Marks Theory/ Practical	Marks at the exams	Total Marks
	4	4	2	25	7.5	100
PG75T401B: Organic Synthesis	4	4	3	25	75	100
PG75T402B: Photochemistry and Pericyclic Reactions	4	4	3	25	75	100
PG75T403B: Heterocyclic and Medicinal Chemistry	4	4	3	25	75	100
PG75D404B: Project Work*	6	4	8	25	125*	150
Practical						
PG75P401B: Lab Course in Organic Chemistry	2	4	3	10	40	50
PG75P402B: Lab Course in Organic Chemistry	2	4	3	10	40	50
PG75P403B: Lab Course in Organic Chemistry	2	4	3	10	40	50
Total	24	28	21	130	395	600

* Project Evaluation:

Dissertation – 75 Marks Presentation/ – 50 Marks Viva-Voce

Description of Papers	Credits	No. of Hrs/ week Theory/ Practical	Duration of exam. in Hrs Theory/ Practical	Internal Assessment Marks Theory/ Practical	Marks at the exams	Total Marks
						100
PG75T401C: Quantum Mechanics and Solid State Chemistry.	4	4	3	25	75	100
PG75T402C: Catalysis and Polymer Chemistry.	4	4	3	25	75	100
PG75T403C: Spectroscopy and Microscopy.	4	4	3	25	75	100
PG75D404C: Project Work*	6	4	8	25	125*	150
C. Practical						
PG75P401C: Lab Course in Physical Chemistry	2	4	3	10	40	50
PG75P402C: Lab Course in Physical Chemistry	2	4	3	10	40	50
PG75P403C: Lab Course in Physical Chemistry	2	4	3	10	40	50
Total	24	28	21	130	395	600

FOURTH SEMESTER (PHYSICAL CHEMISTRY SPECIALIZATION)

* Project Evaluation: Dissertation – 75 Marks Presentation/ - 50 Marks Viva-Voce

FOURTH SEMESTER (ANALYTICAL CHEMISTRY SPECIALIZATION)

Description of Papers A. Core Subjects	Credits	No. of Hrs/ week Theory/ Practical	Duration of exam. in Hrs Theory/ Practical	Internal Assessment Marks Theory/ Practical	Marks at the exams	Total Marks
PG75T401D : Pollution and Analysis	4	4	3	25	75	100
PG75T402D: Quality Control, Analysis of Food, Beverages and Pharmaceuticals.	4	4	3	25	75	100
PG75T403D: Selected Topics in Analytical Chemistry–II	4	4	3	25	75	100
PG75D404D: Project work*	6	4	8	25	125*	150
C. Practical						
PG75P401D: Lab course in Analytical Chemistry.	2	4	4	10	40	50
PG75P402D: Lab course in Analytical Chemistry.	2	4	4	10	40	50
PG75P403D : Lab course in Analytical Chemistry	2	4	4	10	40	50
Total	22	28	24	130	420	550

* Project Evaluation: Dissertation – 75 Marks Presentation/ – 50 Marks

Viva-Voce

FIRST SEMSTER

Course Code and Name	M.Sc. Inorganic Chemistry Syllabus 2011-2012	M.Sc. Inorganic Chemistry Syllabus 2019-2020
PG75T101A Inorganic Chemistry–I	Unit-I: Inorganic Chemistry: Structure, Bonding And Coordination Chemistry Ionic bonding: Properties of ionic compounds, lattice energy, Born- Lande's equation, Born-Haber cycle and its applications, Kapustinskii equation, Solvation energy, dissolution of ionic compounds in polar solvents and its energetics. The predictive power of thermochemical calculations of ionic compounds, covalent character in ionic compounds. Radius ratio and	Unit-I: Structures and Energetics of Ionic Crystals and Covalent Bonds: Ionic Bond: Properties of ionic compounds, crystal lattices, closed packed structures, coordination number of an ion, radius ratio rule, structures of crystal lattices- NaCl, CsCl, ZnS and rutile. Lattice energy: Born Lande equation, Born-Haber cycle, uses of Born-Haber type of calculations. Covalent character in ionic bonds, Fajan's rules, hydration energy and solubility of ionic solids.
	structure of ionic compounds and efficiency of packing of crystal lattices. Covalent bonding: Valence bond theory, orbital overlap, molecular orbital theory, symmetry and overlap, molecular orbital diagrams of diatomic molecules (homo- and hetero- nuclear), triatomic molecules-linear (CO_2 , N_2O) and angular (NO_2), Walsh diagrams, Bent's rules, some reactions of covalently bonded molecules, Resonance, hybridisation, VSEPR theory, molecular geometries.	Covalent Bond: Valence bond theory, resonance, hybridization and energetics of hybridization. VSEPR theory: Deduction of molecular shapes. MOT of homo and heteronuclear molecules and MO treatment for the molecules involving delocalized π -bonding (CO ₃ ²⁻ , NO ₃ ⁻ and CO ₂). Walsh diagrams and Bent's rule.
	UNIT-II:Metallicbonding:Characterization of metallic states, VBapproach, band theory, conductors,insulators, semiconductors, defects insolids.Organometallicchemistry:Classification of organo-transitionmetal complexes, The 18-electron and16-electron rules. Synthesis, structure,bonding and reactions of metal alkyls,aryls and olefin complexes.Metalclusters:Halideclusters:Halideclusters,compounds with metal-metalmultiplebonds.MetalΠ-complexes:Preparation,structure, bonding and importantreactions of metal carbonyls, metalnitrosyls, dinitrogen and dioxygencomplexes.	UNIT-IV: Solid State Chemistry: Crystal lattice: Unit Cell, Miller indices and planes, X-ray diffraction method, molecular solids, hydrogen bonding, metallic, covalent and ionic solids; structural classification of binary and tertiary compounds, determination simple structure, spinel and perosvskite structures. Band theory, conductors, semiconductors and insulators, energy bands, intrinsic and extrinsic semiconductors. Perfect and imperfect crystals, intrinsic and extrinsic defects, point-, line- and plane- defects. Vacancy, Schottky and Frenkel defects.

	formation, colour centres, non–stoichiometry.
UNIT-III: Stereochemistry of coordination compounds: coordination geometry, types of isomerism (geometrical & optical) Review of bonding theories, Molecular orbital theory/Ligand field theory (octahedral, tetrahedral and square planar complexes), MO theory applied to complexes with П-bonding. Evidences for metal-ligand orbital overlap, spectrochemical seires and Jahn –Teller distortion in coordination compounds. Electronic Spectra: Spectroscopic gound terms, Orgel diagrams for transition metal complexes. Magnetism: Types, spin moment, spin- orbit coupling.	UNIT–II: Coordination Chemistry: Coordination numbers 2–10 and their geometries. Crystal field theory of coordination compounds: octahedral, square planar, tetrahedral, trigonal bipyramidal and square pyramidal fields, measurement of 10 Dq and factors affecting it, CFSE, Spectrochemical series and Jahn–Teller effect. Structural evidences for ligand field splitting: hydration, ligation and lattice energies. Evidences for covalency in M–L bonding. MO theory of coordination compounds: MO energy level diagrams for octahedral and tetrahedral complexes without and with pi–bonding. Electronic Spectra: Spectroscopic ground terms, Orgel diagrams for transition metal complexes($T_d & O_h$). Magnetism: Types, spin moment, spin–orbit coupling.
 UNIT-IV: Metal-ligand equilibria: Stepwise and overall formation constants, trends in stepwise constants, factors affecting the stability of metal complexes with reference to the nature of metal ion and ligand. Chelate effect and its thermodynamic origin, determination of formation constants by polarography and spectrophotometry. Concepts of Acids and Bases: Theories of acids and bases, pH and pK_a, acid-base concept in non-aqueous media, HSAB concept and buffers. 	Unit-III: Stability of Metal Complexes, Concepts of Acids and Bases and Non-aqueous Solvents: Stability of complexes: Step-wise and overall formation constants, factors affecting stability of metal complexes, determination of stability constants of metal complexes by spectrophotometric and polarographic methods. Concept of acids and bases: Theories of acids and bases, Bronsted and Lewis acids and bases, Lux–Flood theory, leveling effect of solvents, hardness and softness, HSAB concept and its applications. Non-aqueous solvents: Classification of solvents, properties of non-aqueous solvents. Reactions in non-aqueous media: Liquid ammonia, anhydrous sulphuric acid, anhydrous HF, liquid sulphur dioxide. Super acids.

PG75P101A Lab Course in Inorganic Chemistry	 Separation and determination of two metal ions involving volumetric and gravimetric methods from the following: Fe+Ni, Zn+Cu, Cu+Fe, Zn+Ni Preparation of complexes: Hg [Co (SCN)₄], K₃[Al (C₂O₄)₃].3H₂O and [Cu(tu)₃]₂SO₄.H2O Determination of composition of a complex (colorimetric method)- Demonstration 	 Determination of iron in hematite ore using cerium(IV) solution (0.02M) as the titrant and gravimetric determination of insoluble residue. Determination of calcium and magnesium carbonates in dolomite ore using EDTA titration and gravimetric analysis of insoluble residue. Quantitative analysis of copper- nickel in alloy/mixture: Copper volumetrically using KIO₃ Nickel gravimetrically using DMG Determination of lead and tin in a mixture: Analysis of solder using EDTA. Determination of Cr(III) and Fe(III) in a mixture: Kinetic masking. Quantitative determination of iron(III) gravimetrically using and calcium(II) volumetrically in a mixture. Determination of iron(II) and nickel in a mixture: Iron(II) volumetrically using DMG Determination of iron(II) and nickel in a mixture: Iron(II) volumetrically using K2Cr₂O₇ solution Nickel gravimetrically using DMG solution Preparation of complexes:
PG75T102B : Organic Chemistry–I	UNIT-I:Bonding inOrganicMolecules:Localisedchemicalbonding:	UNIT-I: Bonding in Organic Molecules: Localized chemical bonding: Bond
	Hybridisation index, Bonding in cyclopropane, Bond distances, Bond angles, Bond energies, Calculation of Heats of reactions, Bond order. Delocalised chemical bonding: Conjugation, Cross conjugation, Steric inhibition of resonance, Hyperconjugation, tautomerism, valence tautomerism. Bonding in Fullerenes. Bonding weaker than	distances, bond angles, bond energies, bond polarity, dipole moment and calculation of heat of reactions. Delocalised chemical bonding: Conjugation, cross conjugation, steric inhibition of resonance, hyperconjugation, tautomerism, valence tautomerism. Structure and reactivity: Brönsted- Lowry concept of organic acids,

covalent: Hydrogen bonding, EDA complexes, Inclusion compounds, Complexes of Crown ethers, Catenanes, Rotaxanes. Structure and reactivity: Bronsted-Lowry concept of organic acids, Conjugate acids and bases, pH, pKa values. Electronic, steric, and solvent effects on their strengths. General and Specific acid base catalysis, Running scale of acidity. Lewis acids and bases. HSAB concept. UNIT-II: Organic Reaction	conjugate acids and bases, pH, pKa values. Electronic, steric, and solvent effects on their strengths. General and specific acid base catalysis, running scale of acidity. Lewis acids and bases. HSAB concept.
Mechanisms:Classification of organic reactionMeaning and Importance of reactionmechanism. Methods of Determinationof reaction mechanisms.Kinetic Methods: Order andMolecularity.Non-kinetic Methods: Productidentification, Cross over experiments,Study of intermediates, Isotopiclabeling, Kinetic isotope effects,Stereochemical studies. Mechanisms ofAliphatic nucleophilic substitutions,SN2, SN1and SNi, SRN1 pathwaysRearrangements in SN1 reactions,Nucleophilic substitutions incyclopropyl systems, Nucleofugacity,Nucleophiles. Substitution v/sElimination.Structure, Stability and reactions of thefollowing reactive intermediates:Carbocations (classical and non-classical), carbanions and carbenes,	Mechanisms:Classification of organic reactions:Meaning and importance of reactionmechanism.Non-kinetic methods ofDetermination of ReactionMechanism: Product identification,cross over experiments, study ofintermediates, isotopic labeling,kinetic isotope effects andstereochemical studies.Nucleophilic substitutions (aliphatic):Mechanisms of S_N2 , S_N1 (rearrangements in S_N1 reactions) and S_Ni , $S_{RN}1$ pathways. Effects ofstructure, leaving groups and ambidentnucleophiles.Elimination Reactions: E_2 , E_1 , E_1CB pathways. Stereochemistry, productproportions in dehydration of alcohols,alkyl halides (chiral and achiral),Hoffmann and Saytzeff rules.
UNIT-III Stereochemistry and Conformational analysis: Elements of symmetry and Symmetry Operations and Point groups in small molecules. Optical Isomerism: Optical activity and Chirality. Specific rotation. Molecules with one asymmetric center. Fischer, Wedge and 3D representations, DL and RS systems of indicating configuration. Ring compounds, Molecules with two chiral centers:	UNIT-III: Stereochemistry and Conformational Analysis: Elements of symmetry and chirality, optical isomerism, optical activity, specific rotation. molecules with one asymmetric center. Fischer, Wedge and 3D representations, DL and RS systems indicating configuration. Ring compounds, molecules with two chiral centers: Fischer, Saw–Horse, Newmann projections and their transformations.

	Fischer-SawHorse-Newmannprojections and their transformations.Enantiomers, Diastereomers, Epimers,Racemisation,Resolution.Stereochemical correlation.Stereochemical correlation.Stereochemical correlation.Geometrical Isomerism:E-Znomenclature,configurationofGeometrical isomers,Syn and Antiisomers.Conformationalconformational studyethylene,Chlorohydrin,1,2-dichloroethane,2-aminoethanol,Curtin-Hammett principle.	Enantiomers, diastereomers, epimers, racemization, resolution. Stereochemical correlation. Geometrical isomerism: E–Z nomenclature, configuration of geometrical isomers and syn-& anti- isomers. Conformational analysis: Conformational study of n-Butane, ethylene, glycol, chlorohydrin. Hours)
	UNIT-IV Aromaticity: Aromaticity and Huckel's rule- HMO theory, Energy level diagrams, Mobius systems Benzenoid and Non-benzenoid aromatic compounds. Tropones, Tropolones, Borazine, Azulene, Pyrilium cation, Ferrocene. Alternant and non-alternant hydrocarbons. Aromaticity of charged rings (3-8 membered) Non aromatic, Anti- aromatic and homo aromatic systems. Physical methods for the determination: X-ray, UV, and NMR methods. Ring current as criteria for aromaticity. Annulenes and heteroannulenes [10- 18].	UNIT-IV: Aromaticity: Aromaticity and Huckel's rule: HMO theory, energy level diagrams, möbius systems, benzenoid and non-benzenoid aromatic compounds. Tropones, tropolones, borazine and azulene. Heterocyclic Systems: Systems of the type pyrrole, pyridines, pyrilium cation, ferrocene. alternant and non- alternant hydrocarbons. Aromaticity of charged rings (3-8 membered), non aromatic, anti-aromatic and homo aromatic systems. Ring current as criteria for aromaticity. Annulenes and heteroannulenes [10-18].
PG75P102B : Lab Course in Organic Chemistry	Preparation of the following organic compounds: 1. Benzoic acid and Benzyl alcohol from Benzaldehyde (Cannizarro reaction). 2. p-Chlorobenzoic acid from p-toluidine. 3. Aniline from Benzene. 4. 2,4-Dinitrophenol from chlorobezene. 5. Benzil from Benzaldehyde. 6. m-Nitroaniline from Nitrobenzene. 7. Methyl orange. 8. m-Nitro benzoic acid from Ethyl benzoate. 9. Benzanilide	heteroannulenes [10-18]. Preparation of the following organic compounds: 1. Benzoic acid and benzyl alcohol from benzaldehyde (Cannizarro reaction). 2. Cyclohexanone from cyclohexanol. 3. Reduction of p-nitrobenzaldehyde to p-nitrobenzylalcohol. 4. 2,4-Dinitrophenol from chlorobezene. 5. Benzil from benzaldehyde. 6. m-Nitroaniline from nitrobenzene.

	Benzophenone (Beckmann rearrangement). 10. 2-Hydroxy-5-methyl benzophenone from p-cresol (Fries rearrangement). 11. p-Bromoaniline from acetanilide. 12. p-Nitroaniline from acetanilide.	 m-Nitro benzoic acid from ethyl benzoate. Benzanilide from benzophenone (Beckmann rearrangement). p-Bromoaniline from acetanilide. p-Nitroaniline from acetanilide.
PG75T103C Physicalchemistry: Quantum Chemistry, Reaction Kinetics, Thermodynamics &Electrochemistry and Introduction to Polymers	UNIT- I: Quantum Chemistry – I: Black body radiation, Planck's theory, Photoelectric effect, Compton effect. Bohr theory of hydrogen atom, Sommerfeld theory. Wave- particle duality: de Broglie hypothesis, uncertainty principle, the wave nature of electron. Schrodinger equation. Wave function and its interpretation. Normalization and orthogonality, eigen functions and eigen values.	UNIT-I: Quantum Mechanics: Review of classical mechanics: Equation of motion for a particle, Newtonian, Lagrangian and Hamiltonian equations of motion, elementary wave motion. Operators, eigen values and expectation values, commuting operators, linear operator and Hermitian operators. Solutions of Schrödinger equations of a free particle, particle in a box problem: in one and three dimensions, degeneracy, reflection and penetration of a particle in a one dimensional box of semi- infinite barrier, a particle in a box of finite walls. Rigid rotator, derivation of selection rules for transitions in rotating molecule, linear harmonic oscillator, Hermite polynomials. Equation for the hydrogen atom in spherical polar coordinates and an indication of the method of its solution, the quantum numbers and
	UNIT-II: Quantum Chemistry – II: Solutions of equations of a free particle, particle in a box problem: in one and three dimensions. Rigid rotator and the harmonic oscillator. Equation for the hydrogen atom in spherical polar coordinates and an indication of the method of its solution, the quantum numbers and their significance.Hydrogen-like atoms, properties of the H-atom wave functions. Electronic energy states of	their significance. Hydrogen-like atoms, properties of the H-atom wave functions. Electronic energy states of H-atom. Many electron systems and the self- consistent field method. Electronic configurations in the periodic table. Pauli exclusion principle. UNIT-II: Reaction Kinetics: A critical account of collision and transition state theories. Kinetics and mechanism: Steady state

	· · · · · · ·
H-atom. Many electron systems and the self-consistent field method. Electronic	approximation and simple examples relating kinetics to
configurations in the periodic table.	relating kinetics to mechanism. Theories of Unimolecular
Pauli exclusion principle. Spectroscopic	5
term symbols.	Isomerisation of methyl isocyanide.
	Chain Reactions, examples of chain
UNIT-III: Reaction Kinetics:	reactions, general aspects of chain
A critical account of collision and	reactions. Chain-length, chain transfer
transition state theories.	reactions, chain inhibition, kinetics of
Kinetics and Mechanism: Steady state	branching chain reactions and
approximation and simple examples	explosion limits.
relating kinetics to mechanism. Theories	
of unimolecualr reactions: RRKM	UNIT-III: Thermodynamics:
theory. Isomerisation of methyl	Thermodynamic criteria for
isocyanide.	spontaneous chemical changes.
Chain Reactions: examples of chain	Systems at (i) constant volume and
reactions, general aspects of chain	temperature and (ii) constant pressure
reactions. Chain-length, Chain transfer	and temperature (derivation of $dA \le 0$
reactions, Chain inhibition, Kinetics of	&dG \leq 0). Dependence of free energy
branching chain reactions, explosion	on pressure and temperature. Standard
limits.	free energies and their determination.
	Relation between free energy change
	and equilibrium constant.
	Gibbs-Helmholtz equation and their
	different forms. The pressure
	dependence of free energy of
	non-ideal gases and fugacity.
	Standard state for non-ideal gas.
	Equilibrium constant for system of
	non-ideal gases. Lewis and Randall
UNIT-IV: Thermodynamics&	rule. Temperature dependence of free
Electrochemistry:	energy and equilibrium
Thermodynamic criteria for	constants.Partial miscibility, activity
spontaneous chemical changes.	and activity coefficients of
Standard free energies and their	components of solutions, partial molar
determination. Relation between free	quantities and their determinations.
energy change and equilibrium	Gibbs–Duhem equation and the
constant. The pressure dependence of	calculation of activity of a component
free energy of non-ideal gases;	in solutions. Duhem–Margules
	m solutions. Dunchi-malgules
fugacity. Standard state for non-ideal	<u> </u>
fugacity. Standard state for non-ideal gas. Equilibrium constants in non-ideal	equation. Ternary systems and phase
	<u> </u>
gas. Equilibrium constants in non-ideal	equation. Ternary systems and phase

-	coefficients and Dabya Hueltal	Review on basic concents of nolymore
	coefficients and Debye-Huckel- Onsagar theory of conductance of strong electrolytes.	Review on basic concepts of polymers and their classifications. Homopolymers, copolymers, terpolymers, addition polymers and condensation polymers with examples. Comparison between addition polymers and condensation polymers. Tacticity with examples of polystyrene and PMMA. Elastomers, difference between elastomer and thermoplastic, approaches to increase processability. Techniques of free–radical polymerization: Bulk, solution, suspension, emulsion and precipitation polymerization.Reactions of vinyl polymers: Functional group reactions, ring-forming reactions and block & graft copolymer formation. Crosslinking reactions:peroxide crosslinking, sulphur vulcanization, radiation crosslinking, photo crosslinking and miscellaneous crosslinking reactions. Polymer
PG75P106C: Lab Course in Physical Chemistry	 Calibration: Calibration of glassware and weight box Density: Determination of partial molar volume (eg. Salts in water and 	degradation: Chemical, thermal and radiation degradations. 1. General Information and Chemical mathematics: Calibration of glasswares, concentration measures of solutions- concept of normality, molarity, molality and mole fraction, preparation of standard solution. Treatment of Experimental data Errors, type of errors, Accuracy and precision. Mean deviation, standard deviation,

liquids in water, systems)	significant figures, Methods of
3. Viscosity: Molecular radius of glycer molecule and molecular weight of polymer by viscosity measurement	athe absorptioncurve oftsKMnO ₄ solutiononacolorimeterandhenceverify
4. Distribution law: Distribution of benzoic acid (or succinic acid, etc.) between water and benzene.	
 5. Thermochemistry: i. Step -wise heat of neutralization of a polybasic acid ii. Integral heats of solution are heats of dilution of salts. (e.g., KNO₃, NaCl etc.) 	acids and titration with NaOH) 4. Conductance: Simultaneous
6. Refractometry: Molar refraction of a soli substance by measuring the refractive indices of its solutions.	
 7. Spectrophotometry: Mixture analysis by absorptiometry/Spectrophotom try. Applicability range (for a absorbing substance in solution and evaluation of the mole absorbency index, findir unknown concentration. 	degree of association of benzoic acid in benzene. 6. Viscosity: Determination of viscosity average molecular n) weight of polystyrene in toluene by Ubbelohde Viscometer
8. Reaction Kinetics: Acid hydrolysis, catalytic strength and determinationof Ea.	CH ₃ COOH and ClCH ₃ COOH
9. Potentiometry: Dissociation constant of wea monobasic acids and titration of	of
HCl+CH ₃ COOH with NaOH. 10. Electrical conductance: i. Titration of a weak acid with weak base and a strong acid with	F

	weak base. ii. Titration of acid mixture with NaOH. e.g. CH ₃ COOH + HCl; CH ₃ COOH + H ₂ C ₂ O ₄ ; HNO ₃ + H ₂ SO ₄ ; H ₂ C ₂ O ₄ + HCl	 acid hydrolysis of methyl acetate at two different temperatures. 9. Cryoscopy: Determination of cryoscopic constant of benzene and nitrobenzene 10. Refractometry: Analysis of a binary mixture (glycerol and water) by refractive indices measurement.
PG75T104D : General Chemistry	 UNIT-I Volumetric methods: Classification of reactions in volumetry. Theories of indicators: Acid-base, redox, metallochromic, fluorescent and chemiluminescent indicators. Complexation titrations: Titrations using EDTA. Selective masking and demasking techniques, industrial applications of masking. Precipitation titrations. Redox titrations. Gravimetric methods: Mechanism of precipitate formation. Factors influencing completion of precipitation. Washing, drying and ignition of precipitates. Precipitation from homogeneous solutions. Coprecipitation and postprecipitation. Organic reagents used in gravimetry (Oxine and dimethylglyoxime). UNIT-II Nomenclature of Inorganic Compounds: General aspects and affixes. Naming of ions, radicals, iso and heteropoly anions, acids, salts, salt-like compounds and addition compounds. Chemistry of Lanthanides: Electronic structure, Oxidation states, ionic radii, and Lanthanide contraction. Complex formation. and compounds of Lanthanides Chemistry of Actinides: General features, methods of separation of Np, Pu, Am from 	UNIT-I Language of Analytical Chemistry, Data Treatment and Gravimetric Analysis: Language of analytical chemistry: Definition of analysis, determination, measurement, techniques and methods. Classification of analytical techniques. Selection of an analytical method: Accuracy, precision, sensitivity, selectivity, robustness and ruggedness. Figures of merit of analytical methods: Sensitivity, detection limit and linear dynamic range. Errors and Treatment of analytical Data: Limitations of analytical methods-Errors: determinate and indeterminate errors, minimization of errors. Statistical treatment of finite samples, measures of central tendency and variability, mean, median, range, standard deviation and variance. Student's t-test, confidence interval of mean. Testing for significance and comparison of two means and two standard deviations. Comparison of an experimental mean and a true mean. Criteria for the rejection of an observation, Q-test. External standard calibration, the least squares methods, regression equation and correlation coefficient. Gravimetric analysis: Mechansim of

Uranium. Similarities between Later actinides and Later Lanthanides. UNIT-III Reactions: Friedel-Crafts, Claisen-ester, Claisen-Schmidt, Baylis-Hillman, Houben- Hoesch, Arndt-Eistert, Wurtz, Wurtz-Fittig, Sonogoshira, Buchwald-Hartwig reactions Rearrangements: Amadori, Orton, Wallach, Demjanov, Claisen, Wagner- Meerwein and Nametkin, rearrangements. Transformations: Organic functional group Interconversions involving substitution, addition, elimination, diazocoupling, oxidation, reduction, hydrolysis, and rearrangement reactions associated with aromatic compounds. UNIT-IV Corrosion and its Control: Introduction. Definition. Chemical and electrochemical theories of corrosion. Galvanic series. Factors affecting corrosion rate (nature of the metal, relative areas of anode and cathode, nature of the corrosion product, nature of the medium-conductivity, pH and temperature). Types of corrosion- galvanic, differential aeration (waterline), intergranular, pitting and stress. Corrosion control- design and selection of material, protective coatings- metal coatings, anodic and cathodic, inorganic coatings (anodizes and phosphate), cathodic protection (sacrificial and impressed current methods) and anodic protection.	precipitation, factors influencing precipitation, coprecipitation, postprecipitation and organic reagents used in gravimetry (oxime and dmg). UNIT-II Titrimetric Methods: Titrimetric Analysis: Principles of titrimetric analysis. Classification of reactions in titrimetry. Titrations based on acid-base reactions: Titration curves for strong acid and strong base, weak acid and strong base and weak base and strong base and weak base and strong acid titrations. Titration curves, quantitative applications, selecting and standardizing a titrant, inorganic analysis, alkalinity, acidity and ammonium salts. Complexometric titrations: Indicators for EDTA titrations, theory of common indicators, titration methods employing EDTA, direct, back and displacement titrations, indirect determinations, titration of mixtures using masking and demasking agents. Redox Titrations: Balancing redox equations, calculation of the equilibrium constant of redox reactions, titration curves, theory of redox indicators, calculation of standard potentials, determination of chemical oxygen demand (COD) in natural and waste waters. Precipitation titrations: Titration curves, titrants and standards, indiretere for metains indirets indicators
temperature). Types of corrosion- galvanic, differential aeration (waterline), intergranular, pitting and stress. Corrosion control- design and selection of material, protective coatings- metal coatings, anodic and cathodic, inorganic coatings (anodizes and phosphate), cathodic protection (sacrificial and impressed current methods)	Redox Titrations: Balancing redox equations, calculation of the equilibrium constant of redox reactions, titration curves, theory of redox indicators, calculation of standard potentials, determination of chemical oxygen demand (COD) in natural and waste waters. Precipitation titrations: Titration
Surfactants: Introduction. Properties, Type of surfactants, Anionic surfactants, Cationic surfactants, Nonionic surfactants, Amphoteric surfactants. Applications of the surfactants. Harmful effects of surfactants.	indicators for precipitation titrations involving silver nitrate, the Volhard, the Mohr and the fajan's methods UNIT–III Separation Methods–I: Fundamentals of chromatography:
Fuel Cells: Introduction, difference between conventional cell and a fuel cell, limitations, advantages; types of fuel cells. Construction and working of hydrogenoxygen and methanol-oxygen fuel cells.	General description, definition, terms and parameters used in chromatography, classification of chromatographic methods, criteria for selection of stationary and mobile phase and nature of adsorbents.

Column chromatography: Theories,
plate theory, rate theory, band
broadening-eddy diffusion,
longitudinal diffusion and resistance to
mass transfer, column efficiency, Van
Deemter's equation and its modern
version, interrelationships, capacity
factor, selectivity factor, column
resolution, distribution constant and
applications of conventional column
chromatography, advantages and
limitations.
Thin layer chromatography (TLC):
Definition, mechanism, efficiency of
TLC plates, methodology, selection of
stationary and mobile phases,
development, spray reagents,
identification and detection,
reproducibility of R_f values,
qualitative and quantitative analysis.
quantative and quantitative analysis.
High performance liquid
chromatography (HPLC):
Instrumentation, pumps, column
packing, characteristics of liquid
chromatographic detectors, UV and
fluorescence detectors, advantages and
applications.
UNIT-IV
Separation methods-II
Gas chromatography (GC): Principle,
instrumentation, columns, study of
detectors, thermal conductivity, flame
ionization and mass spectrometry,
factors affecting separation, retention
volume, retention time and
applications. Ion exchange chromatography (IEC):
Definition, principle, requirements for
ion-exchange resin, types of ion-
exchange resins, resin properties-ion-
exchange capacity and its
determination, resin selectivity and
factors affecting the selectivity,
applications of IEC in purification and
"IT how of the m partition and

		recovery processes. Solvent extraction: Nernst partition law, efficiency and selectivity of extraction. Extraction systems: Extraction of covalent neutral molecules, extraction of uncharged metal chelates and synergic extraction,
		extraction of ion-association complexes-non chelated complexes and chelated complexes. Use of salting out agents. Methods of extraction-batch and continuous extractions. Applications (special emphasis on extraction of iron and copper).
PG75P104D: Lab	1. Separation of Binary mixture of Organic compounds without solvent ether,	I. Organic Chemistry Practical
Course in Analytical	containing Carboxylic acids, Phenols,	Quantitative analysis
Chemistry	Bases and Neutral compounds 2. Identification of individual compounds	Titrimetric Estimation of amino acids.
	by qualitative analysis 3. Preparation of functional group	Estimation of glucose by Bertrand's
	derivatives 4. Determination of nitrite by KMnO4.	method. Estimation of keto group.
	 5. Determination of Ni²⁺ using EDTA. 6. Use of masking of agents in volumetric 	Iodine value of oil (Chloramine - T
	analysis. 7. Determine the radius of glycerol	method)
	molecule by viscosity method.8. Comparison of the strengths of two	Estimation of Nitro group by reduction
	acids by finding the rate of the hydrolysis of methyl acetate at room temperature.	using SnCl ₂ .
	9. Determine the relative strength of chloroacetic acid and acetic by	
	conductivity measurements.	Qualitative Analysis
		Separation of binary mixture of
		organic compounds using ether and identification of separated compounds
		by systematic qualitative organic
		analysis.
		Please Note: 1) Individual organic
		compounds are to be given after the
		candidate reports the nature of the
		mixture. 2) Ether insoluble acids and
		ether insoluble Neutral organic

		compounds may be given. 3) Low
		boiling liquids and Amino acids need
		not be given.
		The following mixtures may be given:
		Acid + Base
		Acid + Neutral
		Base + Neutral
		Phenol + Acid
		Base + Phenol
		II-Physical Chemistry Practicals Determination of molecular radius of
		glycerol molecule by viscosity
		method.
		Estimation of metal ions of ferric-
		thiocyante and cupric-ammonia complexes by spectrophotometrically.
		complexes by speed ophotometricany.
		Determination of relative strength of
		acids (HCl and H ₂ SO ₄) by studying
		the hydrolysis of methyl actetate.
		Determination of dissociation
		constants of weak monobasic acids
		potentiometrically by titrating against
		NaOH.
		Comparison of strengths of
		chloroacetic acid and acetic acid using
		conductometric method.
		Determine the dissociation constant of
		acetic acid pH-metrically by titrating against NaOH.
		agailist NaOII.
	SECOND SEMESTER	2
PG75T201A	UNIT-I: Chemistry of non-transition	UNIT–I: Chemistry of Non-
Inorganic	elements:	Transition Elements:
Chemistry:	Syntheses, properties and structures of	Alkali and alkaline earth metal

Chemistry of Non- Transition Elements, Separation Techniques And Group Theory	boranes, borazines, silicates, phosphazenes, S-N compounds, silicones and carboranes. Peroxo compounds of boron, carbon and sulphur. Oxyacids of nitrogen, phosphorus, sulphur and halogens. Interhalogen compounds and pseudohalogens. Noble gas compounds: Preparation and structure of noble gas compounds (oxides and fluorides).	complexes of crown ethers, cryptands and calixarenes and their biological importance. Synthesis, properties and structures of boron, carbon and silicon compounds: Chemistry of higher boranes, classification, structures and MO description of bonding, framework electron counting, Wade's rules, chemistry of B_5H_9 , $B_{10}H_{14}$ and $B_nH_n^{2-}$, boron nitride, borazines, carboranes, metalloboranes, metallocarboranes; silicates, silicones, graphite, graphene, carbon nanotubes and zeolites. Hydrogen bonding and its influence on properties.
	UNIT-II: Separation techniques:	UNIT-II: Chemistry of Main Group
	Ion exchange: Types of ion exchange resins, ion exchange capacity, ion	Elements: Nitrogen, phosphorous and sulphur
	exchange equilibria and selectivity coefficient, techniques of ion exchange	compounds: Hydrides, oxides and oxy acids of nitrogen, phosphorous,
	process.	sulphur and halogens. Phosphorous,
	Applications of ion exchangers:	phosphazene polymers,
	Preparation and purification of reagents, removal of interfering ions,	sulphur-nitrogen compounds: Binary
	concentration and recovery of traces,	sulphur nitrides: S_4N_4 , S_2N_2 and $(SN)_x$. P–O and P–S cage compounds.
	determination of total salts	Chemistry of halogens and xenon:
	(stoichiometric substitution) and in the	Interhalogens, psuedohalogens,
	separation of lanthanides and actinides.	polyhalide ions, oxyhalogen species.
	Solvent extraction: Basic principles of	Xenon oxides and fluorides.
	solvent extraction, relationship between	
	percentage extraction and distribution	
	ratio and distribution selectivity of an	
	extraction. Techniques of extraction and choice of solvents, stripping, back	
	washing, treatment of emulsion,	
	variation of oxidation states, use of	
	masking out and salting out agents.	
	Classification of solvent extraction methods. Synergistic extractions.	
	methods. Synergistic extractions. Applications of solvent extraction	
-	UNIT-III: Chromatography: General	UNIT–IV: Organometallic
	principles and classification of	Chemistry:
	chromatographic methods: Paper, Thin-	Organometallic compounds:
	layer, column and liquid chromatography.	Introduction, classification of
	Gas chromatography : Principles,	organometallic compounds by bond type, nomenclature, classification of
	instrumentation, stationary phases and	ligands σ and π ligands, hapticity of

	types of carrier gas used in GC. Methods of sample injection, types of detectors used, programmed temperature GC, plate and plate height in GC. Applications of GC, use of GC- MS in detection of samples. HPLC and its applications. Data analysis: Errors: Types of errors, propagation of errors, accuracy and precision, significant figures. Standard deviation, Significance of t- and F-tests and least squares analysis UNIT-IV: Symmetry and Group theory: Molecular symmetry, Representation of symmetry operation as matrices. Definition of groups, set of symmetry operations of molecules satisfying the condition of point groups. Representation, basis of representation, reducible and irreducible representation. The great orthogonality theorem, character tables and their applications to chemical bonding	ligands, 18 and 16 electron rules, electron counting schemes. Ferrocene and ruthenocene: Preparation, structure and bonding. Complexes containing alkene and alkyne ligands: Preparation, structure and bonding. Carbene (Fischer and Schrock type) complexes: Synthesis, structure and bonding. The isolobal principles. Use of organometallic reagents in hydrogenation, hydroformylation, isomerisation and polymerization reactions. UNIT-III: Symmetry and Group Theory: Molecular symmetry, representation of symmetry operation as matrices. Definition of groups, set of symmetry operations of molecules satisfying the condition of point groups. Representation, reducible and irreducible representation. The great orthogonality theorem, character tables. The direct product. Applications of group theory: Molecular vibrations; molecular vibration in symmetrical AB ₂ . Hybridisation (tetrahedral and trigonal planar geometries)
PG75P201A Lab Course in Inorganic Chemistry	 Semi-micro qualitative analyses of mixtures containing two each of common cations and anions and one of the following less familiar elements (W,Mo,Ce,Th,Ti,Zr,V and U) Analysis of solder alloy Analysis of haematite ore 	 Semimicro qualitative inorganic analysis of a mixture containing three cations (including one less common cation such as W, Mo, Ti, Zr, Ce, V and Li) and two anions (one of them may or may not be interfering anion such as PO4³⁻, BO3³⁻, C2O4²⁻, F⁻ and CH3COO⁻). Separation and determination of Zn and Mg on an anion exchanger. Demonstration experiment: Determination of iron as the 8-hydroxy quinolate by solvent extraction.
PG75O201A Applied Inorganic Chemistry (Elective)	UNIT-I: Data analysis: Types of errors, accuracy and precision, methods of minimization of systematic errors, mean and standard deviation,	UNIT–I: Data Analysis: Types of errors, accuracy and precision, methods of minimization of systematic errors, mean and standard

	distribution of random errors, reliability of results, comparison of results- Student t-test, F-test and chi-square test, significant figures, confidence intervals, method of least squares, calibration curve and standard addition method UNIT-II: Thermal methods of	deviation, distribution of random errors, reliability of results, comparison of results-Student t-test, F- test and chi–square test, significant figures, confidence intervals, method of least squares, calibration curve and standard addition method.
	 analysis: Thermobalance, Factors influencing thermogravimetric results, Differntial thermal analysis-Instrumentation for differential thermal analysis(DTA) and differential scanning calorimetry (DSC). Applications of TG, DTA and DSC. 7 hrs Inorganic polymers: Silicones, Polyphosphazenes, Synthesis, structure and applications. 	Analysis and Inorganic Polymers: Thermal methods of analysis: Thermobalance, factors influencing thermogravimetric results, differntial thermal analysis: Instrumentation for differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Applications of TG, DTA and DSC. Inorganic Polymers:Silicones, polyphosphazenes, synthesis, structure and applications
	UNIT-III: Bioinorganic Chemistry: Metal ions in biological systems, deficiency of trace metal ions (Fe, Zn, Cu and Mn),Metal ions and chelating agents in medicine: treatment of toxicity due to inorganics (chelation therapy), metal complexes as therapeutic agents. Proteins and their functions: Heme proteins, Oxygen uptake proteins- hemoglobin and myoglobin,	UNIT–III: Bioinorganic Chemistry: Metal ions in biological systems, deficiency of trace metal ions (Fe, Zn, Cu and Mn), metal ions and chelating agents in medicine: Treatment of toxicity due to inorganics (chelation therapy) and metal complexes as therapeutic agents. Proteins and their functions: Heme proteins, oxygen uptake proteins- hemoglobin and myoglobin,
	UNIT-IV: Chromatography:Gas chromatography- Principles, instrumentation, stationary phases and types of carrier gases used in GC. Methods of sample injection, types of detectors, programmed temperature GC, plate and plate height theory in GC. Applications of GC, use of GC- MS in detection of samples.	UNIT-IV: Chromatography: Gas chromatography: Principles, instrumentation, stationary phases and types of carrier gases used in GC. Methods of sample injection, types of detectors, programmed temperature GC, plate and plate height theory in GC. Applications of GC and use of GC-MS in detection of samples.
PG75T202B: Organic Chemistry–II	$\begin{array}{c} \textbf{UNIT-I} \\ \textbf{Reaction Mechanism:} \\ Aliphatic Electrophillic Substitutions : \\ Bimolecular pathways. S_E2, S_E1 and \\ S_Ei mechanisms. Reactions involving \\ double bond shifts. Aromatic \end{array}$	UNIT–I Reaction Mechanism: Aliphatic electrophillic substitutions: S_E2 , S_E1 and S_Ei mechanisms. Reactions involving double bond

Electrophillic Substitutions : Mechanisms of aromatic, Nitration, Sulphonation, Halogenation, isotope effects, energy profile diagrams. Kinetic and thermodynamic control., Hammond's Postulate, o/p ratio. ipso substitution, Vilsmeir Haack, Pechmann, Fries rearrangement. Aromatic Nucleophilic Substitutions : S _N Ar, S _N 1 and aryne pathways. Meisenheimer complexes, Vicarious nucleophilic displacement, Von-Richter and Smiles rearrangement.	shifts, α -halogenation of carbonyl compunds, nitrosation at carbon bearing active hydrogen, mercury exchange reactions. Aromatic electrophillic substitutions: Mechanisms of aromatic, nitration, sulphonation, halogenation, isotope effects, energy profile diagrams. Kinetic and thermodynamic control, sulphonation, Hammond's Postulate, o/p ratio, ipso–substitution, Vilsmeir Haack and Fries rearrangement. Aromatic nucleophilic substitutions: S _N Ar, S _N 1 and aryne pathways. Meisenheimer complexes, mechanism and synthetic applications of vicarious nucleophilic substitution (VNS), Von- Richter, Goldberg, Bucherer, Shiemann reactions and Smiles rearrangement
UNIT-II Advanced Stereochemistry: Prochirality: Homotopic, Enantiotopic and Diastereotopic atoms, groups and faces. Stereochemical Descriptors : Application to reduction of carbonyl compounds, cyanohydrin formation, addition of water to alkenes. Optical activity due to molecular dissymmetry : Allenes, Spiranes, Biphenyls, Atropisomerism, Molecular Crowding. Conformational analysis of cyclohexane, mono substituted and disubstituted (1,2, 1,3, 1,4) cyclohexanes. Cis and Trans Decalins. Chirality of cyclohexanes.	UNIT–II Advanced Stereochemistry: Prochirality: Homotopic, enantiotopic and diastereotopic atoms, groups and faces. Stereochemical descriptors: Application to reduction of carbonyl compounds, cyanohydrin formation, addition of water to alkenes. Optical activity due to molecular dissymmetry: Allenes, spiranes, biphenyls, atropisomerism, molecular crowding. Conformational analysis of cyclohexane, mono substituted cyclohexanes.
UNIT-III Carbohydrates: Conformational representation of monosaccharides. Mechanism of Mutarotation- Base catalysed Isomerisation of Aldoses and ketoses. Epimerisation, Anomeric effect. Glycosides, Ether and Ester derivatives of carbohydrates. Acetone, amino and Deoxysugars. Oxidation and reduction reactions of carbohydrates.	UNIT–III Carbohydrates: Monosaccharides: Conformational representation of monosaccharides and their transformations. Determination of configuration of the monosaccharides, mechanism of mutarotation–base catalyzed isomerisation of aldoses and ketoses. Epimerisation, anomeric effect, glycosides, ether and ester derivatives

	Disaccharides: Lactose, Maltose and Sucrose. Polysaccharides: Structure and degradation of starch, cellulose and glycogen.	of carbohydrates. Acetone, amino and deoxysugars. Oxidation and reduction reactions of carbohydrates. Disaccharides: Structure elucidation of maltose, lactose, sucrose. Polysaccharides: Structure and degradation of starch, cellulose and glycogen.
	UNIT-IV Chemistry of Heterocycles: Nomenclature, structure, reactivity, synthesis, and chemical reactions of : Indole, Quinoline, Isoquinoline, Thiazole, Imidazole, Benzimidazole, Coumarin, Chromones, Flavones and Isoflavones.	UNIT-IVChemistryofheterocycles:Nomenclatureofheterocycliccompoundsincludingfusedheterocycles.Synthesis and chemical reactions ofindole,quinoline,isoquinoline,thiazole,imidazole,benzimidazole,coumarin,flavonesand isoflavones.
PG75P202B: Lab Course in Organic Chemistry	 Quantitative Estimation of the following Organic compounds: a. Acid. b. Acid + Amide. c. Acid + Ester. d. Glucose. e. Molecular weight determination by base hydrochloride method. Preparations of derivatives of heterocycles like Coumarins, Quinolines, Benzimidazoles, Benzoxazines, Pyrazoles etc. Preparations based on functional group reactions of organic compounds like Aldehydes, Ketones, Esters, Phenols etc. Note: Any two of the above experiments will be prescribed for the examination. 	 Quantitative Estimation of the following Organic compounds: (i) Acid (ii)Acid + Amide (iii) Acid + Ester (iv) Molecular weight determination by base hydrochloride method (v) Phenol (Bromometric method). Preparations of derivatives of heterocycles like coumarins, quinolines, benzimidazoles, benzoxazines, pyrazoles by convention, microwave and by sonication. Preparations based on functional group reactions of organic compounds like aldehydes, ketones, esters, phenols etc. Note: Any two of the above experiments will be prescribed for the examination.
PG75T203C: Physical Chemistry–II	UNIT- I: Molecular Spectroscopy: Electromagnetic radiation and its interaction with matter. Atomic and molecular spectra. Rotational spectra of a rigid and non-rigid planar simple	UNIT–I: Microwave Spectroscopy and X–ray Diffraction: Microwave spectroscopy: Gaseous microwave spectra and rotational transitions: Study of inversion of

molecules. Vibrational spectra of harmonically vibrating diatomic molecules, anharmonic case. Morse potential function and dissociation energy. The diatomic vibrating rotator, the vibrations of polyatomic molecules, specific group vibrations. Applications of infrared spectroscopy. Raman spectra: Raman effect, Rotational Raman and vibrational Raman spectra of simple molecules. Complementarity of IR and Raman.	ammonia and hindered rotations in molecules. Instrumentation. Stark effect in molecular spectra, first and second order Stark effects. X-ray diffraction: Origin and production of X-rays, interaction of X-rays with matter: Absorption, scattering and diffraction. Reciprocal lattice: Brag's law in reciprocal space. Instrumentation: Sources, filters, monochromatic detectors. Crystal structure: Unit cell, lattices, planes and miller indices. Debye-Scherrer powder methods and Weissenberg camera. Numerical problems.
UNIT- II:Electronic Spectroscopy: Electronic spectroscopy of diatomic molecules. Born-Oppenheimer approximation. Vibrational course structure of electronic transitions: The v' and v" progressions. Deslandres table. Intensity: the Franck-Condon principle. Pre dissociation. Thermodynamics: A review of the thermodynamics of ideal solutions. Non-ideal liquid systems. Partial miscibility. Activity and activity coefficients of components of solutions, partial molar quantities and their determinations. Gibbs-Duhem equation and the calculation of activity of a component in solutions. Duhem- Margules equation. Ternary systems:	UNIT-II: Reaction Kinetics Kinetics in Solution:Effect of solvent, pressure and ionic strength for ion-ion, ion-neutral molecule type reactions and cage effects. Potential energy surfaces, methods employed in the construct of potential surfaces, calculating reactions. Fast Reactions:Techniques for fast reactions, flow methods, stopped flow technique, relaxation methods and flash photolysis. Numerical problems.
phase diagram of ternary systems. UNIT- III: Reaction Kinetics: Kinetics in solution: Primary and secondary salt effects, ion-ion neutral molecule type reactions. Effect of solvent, cage effect.Mechanism of	Introduction to electrochemistry, Debye-Huckel and Bjerrum models and the corresponding theoretical expression for activity coefficient and Debye–Huckel–Onsagar theory of conductance of strong electrolytes. Electrochemistry of Solution: Activity of ions in solution, solvation number

Gibbs adsorption equation. Flash photolysis and applications. Chemiluminescence.	interactions, ion-ion interactions and free energy of ions in solution and triple ion formation, conductance minima and free energy of ions in solution. Born model for calculating the free energy of ion-solvent interaction and its modifications. The enthalpy and entropy of ion–solvent interaction. Electrical double layer: Electrocapillarity, Lippman equation (surface excess), theories of electrical double layer: Helmholtz–Perrin, Gouy–Chapman and Stern theories. Effect of ions on zeta potential. Over potentials, exchange current density, derivation of Butler–volmer equation and Tafel plot.
UNIT- IV: Introduction to Polymers: Basic concepts: Monomers, repeat units, polymers and degree of polymerization. General classification of polymers, homopolymers, copolymers, terpolymers, addition polymers and condensation polymers with examples, tacticity, comparison between thermoplastics and thermosetting polymers.Techniques of freeradical polymerization: Bulk, solution, suspension, emulsion and precipitation polymerization.Polymer molecular weight:Number average and weight average molecular weights, polydispersity and molecular weight distribution in polymers.Reactions of polymers: Functional group reactions, ring-forming reactions and block & graft copolymer formation. Crosslinking reactions:peroxide crosslinking, sulphur vulcanization, radiation crosslinking, photo crosslinking, electron beam	Transitions in polymers: Definition of glass transition temperature (T_g) and flow temperature (T_f) and melting temperature (T_m) , thermal behaviour of amorphous and crystalline polymers, factors affecting the T_g .Plasticizers, properties and their effect on T_g of PVC and diethylhexylsuccinate, efficiency of plasticizers, comparison of T_g and T_m . T_g of copolymers and polymer blends, relation between T_g and T_m . Polymer molecular weight: Number average and weight average molecular weights, polydispersity and molecular weight distribution in polymers. Numerical problems on determination of molecular weights.Kinetics of polymerization; Kinetics of free- radical addition polymerization, cationic polymerization, anionic polymerization, copolymerization and determination of reactivity ratios.

	crosslinking and miscellaneous	Polymer synthesis: Ziegler–Natta
	crosslinking reactions. Elastomers	polymerization (isotactic and
		syndiotactic) and its limitations.
		Metallocene catalysis polymerization
		(isotactic). Metathesis polymerization:
		Acyclic diene metathesis
		polymerization (ADMET) and ring
		opening metathesis polymerization
		(ROMP). Group transfer
		polymerization (GTP) and advantages
		of GTP.
PG75P203C : Lab	1. Surface Tension:	1. Solubility: Determine the heat of
Course in Physical	a. Variation of surface tension of	solution of a solute (eg. oxalic
Chemistry	aqueous solutions of n-propyl	acid or benzoic acid) by solubility
	alcohol with concentration and	method.
	determination of the limiting	
	cross-sectional area of the	
	molecule.	2. Coulometric titration: Titration
	b. Effect of added salt on surface	of I_2 against $Na_2S_2O_3$.
	tension of water (and/or	
	comparison of the cleansing	3. Cryoscopy: Determination of the
	powers of the two detergent	degree of dissociation of a given
	samples).	strong electrolyte and the
		determination of the number of
	2. Solubility:	ions present in the solute using
	Heat of solution of an organic	cryoscopy method.
	compound by solubility	
	experiments and the effect of	4. Spectrophotometry: To obtain the
	addition of an electrolyte on the	absorption spectra of coloured
	solubility.	complexes (Ferric-thiocyanate and
	soluonity.	Cupric–ammonia complexes) and
	3. Phase Equilibria:	hence verify the Beer–Lambert's
	Equilibrium constant of the	la w and e stimation of metal ions in
	reaction: $KI+I_2$ KI_3	
		solution by spectrophotometry.
	4. Thermochemistry:	5. Conductance: (i) Determination
	Heat of neutralization of a weak	of equivalent conductance of a
	acid and calculation of its heat of	weak electrolyte at different
	ionization.	concentrations and the
	5. Spectrophotometry:	applicability of Ostwald's law. (ii)
	Investigation of complex formation.	Determination of equivalent
	(eg., Fe ⁺³ + Salicyclic acid	conductance of a weak electrolyte
	system:formula, stability, ΔG value	from Kohlrausch's law.
L	· · · ·	

calculation and pH e	affects)
calculation and pri e	6. Potentiometry: Potentiometric
 6. Electric conductance Equivalent conductance electrolyte at different and the applicabilit law. a. Verification of equation for stront b. Equivalent conductance 	e:determination of formal redox potential of Fe^{2+}/Fe^{3+} and $Ce^{4+}/$ Ce^{3+} or Cr^{6+}/Cr^{3+} couples by titrating Fe^{2+} solution with Ce^{4+} or Cr^{6+} .The Onsager ong electrolytes.7. Reaction Kinetics: Investigation
weak electr Kohlrausch's lav 7. Reaction Kinetics:	rolyte from potassium permanganate and
 a. Salt effect on the iodide reaction. b. Iodination of aceteric c. Autocatalysis: Magain aceteric providence in the present. 	one. (Staudinger index) of polystyrene. In (VII)-Oxalic
acid case in the prese	ence of H ₂ SO ₄ . 9. pH metry: Titration of acetic acid against NaOH and hence
 8. EMF of Cells: a. Solubility of sp salts. b. Titration of Fe²⁻ Cr⁶⁺ and determ formal redox po complexes of Ce⁴⁺/ Ce³⁺ or Cr⁶ c. Titration of Zn²⁺ and determina empirical formul complex formed. 	baringly soluble determine the acid dissociation constant (K_a). ⁺ with Ce ⁴⁺ or mination of the otentials of the Fe ³⁺ /Fe ²⁺ and ⁵⁺ / Cr ³⁺ . with Fe (CN) ₆ ⁴⁻ ation of the la of the
 9. Cryoscopy: a. Determination of dissociation of electrolyte determination of ions present in the b. Determination of weight of the g the vacuum flask 	a given strong and the f the number of he solute. f the molecular given solute by

THIRD SEMSEST (INORGANIC CHEMISTRY)

PG75T301A	UNIT-I: Spectral and Magnetic	UNIT-I: Electronic spectra and
Coordination And	properties of complexes:	magnetic properties:
Bioinorganic	Term symbols for d ⁿ ions,	Spectral properties of complexes:
Chemistry	spectroscopic ground states, selection	Term symbols for d ⁿ ions,
	rules, nature of spectral bands- band	spectroscopic ground states, selection
	shapes, band intensities, band widths,	rules, nature of spectral bands- band
	effect of spin-orbit coupling, Orgel	shapes, band intensities, band widths,
	diagrams, Tanabe-Sugano diagrams,	spin-orbit coupling, Orgel diagrams,
	Racah parameters, interpretation of	Tanabe–Sugano diagrams, Racah
	spectra of octahedral, distorted	parameters, interpretation of spectra of
	octahedral, tetrahedral and square	octahedral, distorted octahedral,
	planar complexes, calculation of	tetrahedral and square planar
	nephelauxetic parameter, Charge	complexes, determination of 10Dq, B'
	transfer bands, intervalence charge-	and nephelauxetic parameterfrom
	transfer bands.	absorption spectra of octahedral and
	Type of magnetic behaviour, classical	tetrahedral complexes, charge transfer
	magnetism, orbital contribution, orbital	bands: Origin, types, and
	contribution reduction factor, spin orbit	characteristics, intervalence
	coupling, measurement of magnetic	<mark>charge–transfer bands.</mark>
	susceptibility – Gouy and Faraday	Magnetism: Determination of
	methods, diamagnetic corrections,	magnetic susceptibility (Gouy and
	magnetically non-dilute compounds-	Faraday methods), diamagnetic
	ferro, antiferro and ferri magnetic, spin	corrections, orbital contribution, ferro-
	cross-over systems, correlation of	ferri– and anti–ferro magnetism, Curie
	magnetic and structural properties	law, Curie–Weiss law, effect of
		temperature on dia-, para-, ferro- and
		anti-ferromagnetic compounds,
		temperature independent
		paramagnetism, effect of spin orbit
		coupling on spectral and magnetic
		properties and spin cross-over
		systems.
	UNIT-II: Reaction Mechanisms in	8
	Transition Metal Complexes:	mechanisms
	Energy profile of a reaction, inert and labile complexes kinetics of octahedral	Basic principles, lability, inertness, substitution reactions of octahedral
	labile complexes, kinetics of octahedral substitution and mechanistic aspects.	complexes. Nature of substitution
	Acid hydrolysis, factors affecting acid	reactions: Theoretical approach to
	hydrolysis, base hydrolysis, conjugate	substitution mechanisms, mechanism
	base mechanism and evidences in its	of substitution reaction of complexes
	favour. Anation reactions, Substitution	of cobalt: Acid hydrolysis and base
	reactions in square planar complexes,	hydrolysis of Co(III) complexes,
	trans effect, mechanisms of	substitution reactions of square planar
	mans encey meenuments of	substitution reactions of square plana
	substitution. Electron transfer reactions-	complexes, reaction of Pt(II)

complimentary and non-complimentary reactions. Photochemistry of metal complexes- Types of photochemical reactions, photosubstitution and photoredox reactions and solar energy conversion	trans-effect, mechanism and kinetics of substitution of Pt(II) complexes. Electron tunneling hypothesis: Marcus-Hush theory, atom transfer reaction, one- and two-electron transfer. Inner sphere and outer sphere mechanisms.
UNIT-III:Metal ions in biological systems: Essential and trace metals, active transport of cations (Na and K), ionophores, Metalloproteins as enzymes – carboxy peptidase, catalases, peroxidases, cytochrome P450, superoxide dismutase, copper oxidases, vitamin B ₁₂ coenzyme. Synthetic model compounds. Metals in medicine- metal deficiency (Fe,Mn,Cu and Zn), chelation therapy and metal complexes as drugs.	UNIT-III:Bioinorganicchemistry-IMetal ions in biological systems,essential and trace metals, disease dueto metal deficiency and treatment:Iron, zinc, copper, manganese,sodium, potassium, magnesium andcalcium.Metal complexes astherapeutic agents:Metal complexes forthe treatment of rheumatoid arthritis,vanadium in diabetes, metalcomplexes as radio diagnostic agents.Treatment of toxicity due toinorganics:Chelation therapy andrequirements of a chelate/antidote.Mechanism of antidotes with poisonrendering it inert:Arsenic, lead,mercury, iron, copper, plutonium,cyanide and carbon monoxidepoisoning.Ion transport across membranes andactive transport of ions acrossbiological membranes, ionophores.Metal complexes in transmission ofenergy:Chlorophyll,photosystems–Iand II in cleavage ofwater and model systems.
UNIT-IV: Heme and non-heme	UNIT-IV: Bioinorganic
systems : Chlorophyll and its role in photosynthesis,transport and storage of dioxygen- heme proteins, oxygen uptake, functions of haemoglobin, myoglobin, hemerythrin and hemocyanins, synthetic oxygen carriers. Metal storage and transport – ferritin, transferrin and ceruloplasmin. Electron transfer proteins- cytochromes and iron-sulphur proteins. Biological nitrogen fixation, <i>In vivo</i> and <i>in vitro</i> nitrogen fixation, Interactions of transition metal complexes with	chemistry–II: Transport and storage of dioxygen, heme proteins, oxygen uptake, functions of haemoglobin, myoglobin, hemerythrin and hemocyanins, synthetic oxygen carriers. Metal storage and transport: Ferritin, transferrin and ceruloplasmin. Electron transfer proteins: Cytochromes, iron–sulphur proteins. Metalloproteins as enzymes: Carboxy peptidase, carbonic anhydrase,

	DNA.	catalases, peroxidases, cytochrome
		P-450, cytochrome c-oxidase,
		superoxide dismutase, copper oxidases
		and vitamin B_{12} coenzyme.
		Biological nitrogen fixation, in
		<i>vivo</i> -andin <i>vitro</i> - nitrogen fixation.
PG75T302A :	UNIT-II: Vibrational spectroscopy:	
Molecular	Infrared spectroscopy-Vibrational	
Spectroscopy	energy levels, infrared spectra of	Vibrational Spectroscopy:Basicconceptsand
specifoscopy	diatomic and polyatomic molecules,	BasicconceptsandIntroduction:Propertiesof
	Normal modes of vibration, force	I I I I I I I I I I I I I I I I I I I
	constant, selection rules,	electromagnetic radiation, Wave property: Interference and
	anhormonicity, the vibration-rotation	
	spectroscopy. Infrared spectra of simple	diffraction.Particle property: Photoelectric effect. Regions of the
	molecules and coordination	<u> </u>
	compounds, changes in infrared spectra	electromagnetic spectrum, energies corresponding to various kinds of
	of donor molecules upon coordination	radiation. Interaction of
	(N,N-dimethylacetamide, urea, DMSO,	electromagnetic radiation with matter
	pyridine N-oxide, ammine, cyano,	(absorption, emission, transmission,
	cyanato and thiocyanato complexes),	reflection, dispersion, polarisation and
	mono and multinuclear carbonyl	scattering). General application.
	complexes, nitrosyls, phosphine and	Vibrational spectroscopy:Infrared
	arsine complexes. Change in spectra	1 12
	accompanying change in symmetry	spectroscopy: Vibrational energy levels, infrared spectra of diatomic and
	upon coordination (NO ₃ ⁻ , SO ₄ ²⁻ $\overline{NO_2}$ ⁻ ,	polyatomic molecules, normal modes
	and ClO_4^{-}), hydrogen bonding,	of vibration, force constant, selection
	instrumentation including FTIR.	rules, anhormonicity, the
	÷	
	Raman spectroscopy: Theory, relation with IR spectroscopy,	vibration-rotation spectroscopy.
	resonance Raman stimulated hyper and	Infrared spectra of simple molecules
	inverse Raman effects. Experimental	and coordination compounds, changes
	techniques, structure determination	in infrared spectra of donor molecules upon coordination
	from IR and Raman spectra	1
	from fix and Kaman speetra	(N,N–dimethylacetamide, urea,
		DMSO, pyridine N-oxide, ammine,
		cyano, cyanato and thiocyanato
		complexes), mono and multinuclear
		carbonyl complexes, nitrosyls,
		phosphine and arsine complexes.
		Change in spectra accompanying
		change in symmetry upon
		coordination (NO ₃ ⁻ , SO ₄ ²⁻ , NO ₂ ⁻ , and
		ClO ₄ ⁻), hydrogen bonding.
		Instrumentation including FTIR.
		Raman spectroscopy:Theory, relation
		with IR spectroscopy, resonance
		Raman stimulated hyper and inverse
		Raman effects. Experimental
		techniques, structure determination
		from IR and Raman spectra.

UNIT-III: Magnetic Resonance	UNIT–II: Magnetic Resonance
spectroscopy:	spectroscopy-I:
Nuclear Magnetic Resonance	Nuclear magnetic resonance
spectroscopy. Magnetic properties of	spectroscopy: Magnetic properties of
nuclei, population of energy levels, the	nuclei, population of energy levels, the
Larmar precession, relaxation	Larmor precession, relaxation
processes, Chemical shift, shielding	processes, chemical shift, shielding
mechanism, spin-spin interactions,	mechanism, spin-spin interactions,
rules governing the interpretation of	rules governing the interpretation of
first order spectra, effect of chemical	first order spectra, effect of chemical
exchange on spectra. Analysis of	exchange on spectra. Analysis of
complex NMR spectra, ¹ H nmr spectra	complex NMR spectra, ¹ H–NMR
of organic molecules and complex	spectra of organic molecules and
metal ligands, NMR studies of nuclei	complex metal ligands. Spin-systems:
other than proton, ¹³ C (including	First order and second order patterns.
heteronuclear coupling with other	Long range coupling : Spin
nuclei viz ${}^{19}F$ and ${}^{31}P$), ${}^{19}F$, ${}^{31}P$, ${}^{11}B$,	decoupling, CIDNP and NOE. NMR
¹⁵ N. Spectra of paramagnetic	shift reagents.
complexes, contact shift, double	NMR studies of nuclei other than
resonance technique, shift reagents,	proton, ¹³ C–NMR (including
Instrumentation including FT nmr.	heteronuclear coupling with other
	nuclei viz., ¹⁹ F and ³¹ P): Broad band
	and off resonance, decopouling
	methods, use of ¹³ C–NMR in
	structural determination of organic and
	inorganic molecules. ¹⁹ F, ³¹ P, ¹¹ B, ¹⁵ N.
	Spectra of paramagnetic complexes,
	contact shift, double resonance
	technique. Instrumentation including
	FT–NMR.
	Correlation NMR spectroscopy: ¹ H–
	¹ H (COSY) and $^{13}C^{-1}H$
	(HETEROCOSY) methods.
UNIT-IV: Electron Paramagnetic	UNIT-III: Magnetic Resonance
Resonance (EPR) Spectroscopy:	spectroscopy–II and Mössbauer
Basic principles, Selection rules,	Spectroscopy:
intensity, width, position of spectral	
line, multiplet structure of EPR spectra,	Electron Paramagnetic Resonance
hyperfine interaction, spin-orbit	(EPR) Spectroscopy: Basic principles,
coupling, zerofield splitting and	selection rules, intensity, width,
Kramer's degeneracy, rules for	position of spectral line, multiplet
interpreting spectra, factros affecting the magnitude of values.	structure of EPR spectra, hyperfine
e	interaction, spin-orbit coupling,
Instrumentation. Applications to the	zerofield splitting and Kramer's
study of free radicals, Coordination	degeneracy, rules for interpreting
compounds, biological studies, rate of	spectra, factros affecting the
electron exchange reactions. Nuclear Quadrupole Resonance	magnitude of values. Instrumentation.
	Applications to the study of free
(NQR) Spectroscopy-Quadrupole	radicals, coordination compounds,

UNIT-I:BasicconceptsandIntroduction:Properties of electromagnetic radiation:Waveproperty-interference,diffraction.Particle property-Photoelectric effect.Regionsoftheelectromagneticspectrum,energiescorresponding tovarious kindsofradiation.Interactionofelectromagneticradiationwithmatter(absorption,emission,transmission,reflection,polarisationandscattering.),Generalapplication.Electronic spectroscopy:Molecularelectronicspectraofdiatomicmolecules,electronic transitions,selectionrules,assignmentoftransition,bandintersities,substituentandsolvent	hexacyanoferrates, nitropruside, tin halides. UNIT-IV: Electronic Spectroscopy and Mass Spectrometry: Electronic spectroscopy:Molecular electronic absorption spectroscopy (UV-Visible), electronic spectra of diatomic molecules, electronic transitions, selection rules, assignment of transition, band intersities, substituent and solvent effect and change transfer transitions. Application to organic and inorganic molecules. Photoelectron spectroscopy:Basic principles: Photo-electric effect, ionisation process, Koopman's theorem. Photoelectron spectra of simple molecules, ESCA and chemical information from ESCA. Instrumentation. Auger electron spectroscopy, basic ideas. Mass Spectrometry:Ionization and
effect, change transfer transitions, Application to organic and inorganic molecules. Photoelectron spectroscopy: Basic principles; Photo-electric effect. ionisation process, Koopman's theorem. Photoelectron spectra of simple molecules, ESCA, chemical information from ESCA. Instrumentation.	Mass Spectrometry:Ionization and mass analysis. Instrumentation. Methods of ionization: EI, CI, DI, SI methods. Fragmentation: Principles, odd electron (OE ⁺⁺)and even electron (EE ⁺) ions, molecular ion and base peak, nitrogen rule, metastable ions. Isotope effects in chloro and bromo compounds. Fragmentation of inorganic and oraganic compounds: (i)

	Auger electron spectroscopy, basic ideas.	normal and branched alkanes. (ii) alkenes. (iii) benzene and its derivatives. (iv) alcohols. (v) aldehydes. (vi) ketones. (vii) acids. (viii) esters. (ix) ethers. (x) amines. (xi) nitro compounds. (xii) halo compounds.
PG75T303A: Selected Topics In Inorganic Chemistry	SelectedIntroduction, importance of non aqueous solvents, classification and properties of solvents, types of	UNIT–I: Metal Clusters: Metal π-acceptor complexes: Metal carbonyls, preparative methods, structure and bonding, vibrational spectra of metal carbonyls for bonding and structural elucidation, magnetic and X-ray evidences of structures, MO representation of bi– and tri–nuclear carbonyls, reactions of metal carbonyls. Metal carbonylates and carbonyl halides: Preparation and important reactions. Chemistry of metal nitrosyls: Preparation, structure and bonding, dinitrogen and dioxygen complexes. Metal–metal bonding in carbonyls and halides, evidences for M–M bonding, factors favouring M–M bond formation. Metal clusters: Bi–, tri–, tetra–, penta– and hexanuclear metal clusters.
	UNIT-II: Ceramics, Composites and Nanomaterials: Ceramic materials- Introduction, structures, classification-clay, glasses, refractories-characteristics, classification and applications. Composite materials-introduction, classification-1. Dispersion strengthened, particulate strengthened and fibre reinforced composites. Matrix materials, characteristics of fibres. Nanometrials.	UNIT-II: Lanthanides and acinides: Correlation of general properties of d-block elements with those of 4f and 5f elements. Lanthanide series: Introduction, electronic structure, oxidation states, lanthanide contraction, abundance and extraction (solvent extraction and ion-exchange methods), lanthanides as shift reagents, chemical properties of compounds of lanthanides in II, III, and IV oxidation states. Magnetic properties, colour and spectra. Actinides: Electronic structure and position in the periodic table, oxidation states, occurrence and synthesis of elements. Spectral and magnetic properties of compounds of actinides in comparison with those of lanthanides and d-block elements. Chemistry of separation of Np, Pu &

UNIT-III: Analysis of Coal: Proximate and ultimate analysis of coal. Analysis of food Moisture, ash, crude proteins, fat, crude fiber, carbohydrates, calcium, potassium, sodium and phosphate. Food management, food additives, chemical preservatives in foods, food adulteration-common adulterants in food, detection of food adulteration and contaminations of food stuffs. Adulteration and law.	Am from U & fission products. Uranium:Isotope separation/enrichment and chemistry of uranium salts.Unit–III:Fuel analysis and agricultural chemistry: Fuels: Solid, liquid and gaseous fuels, ultimate and proximate analysis, calorific values, grading of coal. Liquid fuels: Flash point, aniline point, octane number and carbon residues. Gaseous fuels: Producer gas and water gas.Analysis of soil: Inorganic and organic components of soil, collection and preparation of soil samples for analysis. Measurement of soil moisture, pH, total nitrogen, phosphorous, silica, lime, magnesia, manganese, sulphur and alkali salts. Fertilizers: Fertilizer industries in India, manufacture of ammonia, ammonium salts, urea, nitrates, phosphates and superphosphates and mixed fertilizers.
UNIT-IV: Analysis of Drugs in Pharmaceutical Formulations: Vitamins:Thiamine hydrochloride, riboflavin, pyridoxine hydrochloride, nicotinamide, cynocobalamine, ascorbic acid and folic acid. Antibiotics: Structure, properties, identification and analysisof chloramphenicol, erythromycin, neomycin, penicillins, nystatin, streptomycins and tetracyclines.	Excited states of metal complexes,
	conversion and storage

	$2 C_{2}(DMC) 2 \dots 1 1 f_{2} V'_{2} D 1 2 1$	$2 C_{0}(DMC) 2 \dots 1 1 f_{0} U' D 1 2 \dots 1$
	2. Co(DMG)2 model for Vit.B12 and	
	reactions	reactions.
	3. CuCl2 - DMSO complex.	3. Hexaamminecobalt(III) chloride
	4. Mercuric phenyl acetate	4. Mercuric phenyl acetate
	5. Pentammine chloro cobalt (III)	5. Pentaamminechloridocobalt(III)
	chloride.	chloride.
	6. Preparation of nitro- and nitrito-	6. Preparation of nitro- and nitrito-
	complexes.(examples for linkage	complexes. (examples for linkage
	isomers)	isomers)
	7. Separation of optical isomers of	7.Separation of optical isomers of cis-
	cis[Co(en)2Cl2]Cl.	[Co(en)2Cl2]Cl.
	8. Tris(thiourea) copper(I) sulphate	8.Tris(thiourea)copper(I) sulphate
	monohydrate	monohydrate.
	9. Hexaammine nickel(II) chloride	9.Hexaamminenickel(II) chloride.
	10. Mercury tetrathiocyanato	10.Mercury
	cobaltate(II)	tetrathiocyanatocobaltate(II).
	11. Tris(acetylacetanato)manganese(III)	11.Tris(acetylacetanato)manganese(III
	12. Trans and cis-potassium dioxalato).
	diaquo chromate(III)	12.Trans and cis-potassium
	13. N, N- bis (salicylaldehyde)	dioxalatodiaquochromate(III).
	ethylenediammine copper(II)	13.N, N-bis(salicylaldehyde)
	II. Characterisation	ethylenediaminecopper(II).
	1. Elemental analysis	ethylenedianinecopper(ii).
	2. N2 analysis by Kjeldahl's method	II. Characterization
	2. 112 unurysis by Kjerduni s method	1.Elemental analysis.
	3. Metal ion determination in above	2.N2 analysis by Kjeldahl's method.
	complexes	3.Metal ion determination in above
		complexes.
		4.Anion determination in above
	complexes	
	5. IR, Electronic, NMR, Magnetic and	complexes.
	CV studies wherever possible.	5.IR, Electronic, NMR, Magnetic and
	6. Interpretation of IR and NMR	CV studies wherever possible.
	spectra	6.Interpretation of UV-VIS, IR and
		NMR spectra.
PG75P302A:	Instrumental methods of analysis	Instrumental methods of analysis
Lab Course in	a) Colorimetry	1. Colorimetry: (i) Determination of
Inorganic	1. Determination of Fe using o-	Fe using o-Phenanthroline, (ii)
Chemistry	Phenanthroline	Determination of Zr using Alizarin
	2. Determination of Zr using Alizarin	red S, (iii) Determination of Ti by
	red S	H ₂ O ₂ method, (iv) Determination of
	3. Determination of Ti by H_2O_2	Mn / Cr /V in steel samples, (v)
	method	Job's method for Fe-1,10-phen
	4. Determination of Mn / Cr /V in steel	complex, (vi) Mole ratio
	samples	method–Zr + Alizarin red-S,
	5. Job's method for Fe-ophen complex	(vii) Slope ratio method-Cu + en
	6. Mole ratio method - Zr + Alizarin	complex, (viii) Determination of
	red-S	stability constant of (7), (ix)
	7. Slope ratio method- Cu + en	Determination of pK_a of an
	—	-
	complex	indicator (methyl red) in aqueous
	8. Determination of stability constant of	indicator (methyl red) in aqueous solution.

	 (7). 9. Determination of pKa of an indicator (methyl red) in aquious solution b) Conductometry c) Potentiometry d) Electrogravimetric analysis e) Magnetic susceptibility determination. f) Flame photometry 	 Conductometry: (Cl⁻, Br-, l⁻and SO₄²⁻) Potentiometry: (Halide mixture and Co²⁺ vs. ferricyanide) Electrogravimetric analysis (Cu and Ni mixture) Magnetic susceptibility determination
PG75P303A: Lab Course In Inorganic Chemistry	Analysis of: Coal Pharmaceutical drugs Vitamins and Food Use of Muffle furnace Use of Computers: The students shall learn how to operate a PC and how to run standard programs and packages such as MS-WORD, EXCEL, ORIGIN, SIGMA PLOT, CHEM SKETCH. Problems will be taken preferably from Inorganic chemistry for plotting first and second derivative curves, linear plots etc. Problems from chemical kinetics, polymer chemistry, analytical chemistry, electrochemistry, spectroscopy etc. will be solved. Writing the structures of inorganic and organic molecules, writing chemical equations and other interesting applications will be taught	 Determination of vitamin C in juice/tablet by titrimetric method. Fluorimetric determination of riboflavin (Vit B₂) in tablets. Determination of iron in pharmaceuticals by visual and potentiometric titration using cerium(IV) sulphate. Determination of sulpha drugs by potentiometry using NaNO₂ and iodometric assay of penicillin. Assay of aspirin/caffeiene/phenacetin by spectrophoptmetry/titrimetry Determination of vitamin A in vanaspathi by UV spectrophotometry Analysis of a soil sample for (i) Available phosphorus by spectrophotometry, (ii) Nitrate- nitrogen/nitrite nitrogen/ammonia nitrogen by spectrophotometry, (iii) sodium and potassium by flame photometry. Analysis of fertilizers: Urea and super phosphates

FOURTH SEMESTER (INORGANIC CHEMISTRY)

PG75T401:	UNIT-I: Atomic Absorption UNIT–I: Optical methods:
AInstrumental	Spectrometry : Theory, Atomic absorption spectrometry:
Methods of	Instrumentation, different types of Theory, instrumentation, different types
Analysis	nebulizers, non flame techniques, of nebulizers, non flame techniques,
	electrothermal vapourisers, cold electrothermal vapourisers, cold vapour
	vapour AAS, interferences, and AAS determination of mercury,
	analytical applications. interferences, differences between AAS
	Emission Spectroscopy : Flame and flame photometry and analytical
	Emission Spectroscopy, plasma applications of AAS. Emission
	emission spectrometry, basic

principles of flame photometry, interferences, applications of flame photometry, Inductively coupled plasma optical emission spectrometry- theory and applications. Molecular Luminescence Spectroscopy: Principle of fluorimetry, instrumentation, factors affecting fluorescence, its applications in quantitative analysis.	spectroscopy: Inductively coupled plasma optical emission spectrometry, theory and applications. Molecular luminescence spectroscopy: Theoretical basis for fluorescence and phosphorescence, instrumentation, factors affecting fluorescence, its applications in quantitative analysis and in the study of biomolecules.X-ray fluorescence elemental analysis.
 UNIT-II: Electrophoresis: Theory and classification, Factors influencing mobility, macromolecular size and charge, Factors affecting electrophoretic phenomena, electrolysis, electroosmosis, temperature and supporting media. Instrumentation, methodology, gel electrophoresis. Applications. Gel Filtration: Theory, different types of gels, techniques and applications. Coulometry: Principle, constant current and controlled potential coulometry, Applications. Amperometry: Principle, titrations, advantages and limitations, Applications 	UNIT-II: Analytical methods-I Coulometric methods of analysis: General discussion, coulometry at controlled potential, apparatus and general technique, applications, coulometric titrations (amperometric coulometric): Principles, apparatus, comparison of coulometric titrations with conventional titrations, automatic coulometric titrations and applications. Amperometry: Principle, titrations, advantages and limitations. Applications. Ion selective electrodes: Glass ion selective electrodes, crystalline solid state ion selective electrodes liquid-based ion selective electrodes and gas sensing electrodes. Supercritical fluid chromatography (SFC): Properties of supercritical fluids, instrumentation and operating variables, comparison of SFC with other types of chromatography.
UNIT-III : Ion selective electrodes: Types of construction of ion selective electrodes, glass electrode, solid state and precipitate electrodes, sensing electrodes, glass microelectrodes and applications Thermal methods: Principle, methodology, factors affecting the results and applications- thermogravimetric and differential thermal analysis and differential scanning calorimetry.	Applications.UNIT-III: Analytical methods-IIPolarography: Theory of classicalpolarography: Theory of classicalpolarography: polarograms,polarographic currents. Halfwavepotential, oxygen interference,advantages and limitations. Pulsepolarography. Applications ofpolarography.Electrogravimetric analysis: Theory,apparatus, deposition and separation,electrolytic separation of metals,applications.Electrophoresis: Theory andclassification. Factors influencing themobility-macromolecular size and

		charge, interaction with supporting electrolyte, pH and concentration discontinuities. Factors affecting electrophoretic phenomena-electrolysis, Electroosmosis, temperature and supporting media. Instrumentation. Methodology-preparation of gels- staining and destaining. Capillary electrophoresis methods - capillary zone electrophoresis, capillary gel electrophoresis. Light-Scattering methods: Nephelometry and turbidometry- Principle, instrumentation and applications.
	 UNIT-IV: Polarography: Theory of classical polarography, measurements, polarograms, polarographic currents. Halfwave potential, oxygen interference, advantages and limitations. pulse polarography. Applications of polarography Voltammetry: Modified voltammetric methods, cyclic voltammetry-principle, experimental set up, quantitative analysis, determination of diffusion coefficients, criteria for reversible, quasi reversible and irreversible reactions. Stripping analysis- Principle, methodology, electrodes and cell design and applications. Light-Scattering methods: Nephelometry and turbidimetry-theory, effects of concentration, particle size and wavelength on scattering, instrumentation and applications. 	Thermal method of analysis: Introduction. Thermogravimetric analysis (TGA): Types of thermogravimetric analysis, principles, factors affecting the results, heating rate, furnace, instrument control/data handling. Instrumentation and applications. Differential thermal analysis (DTA): Theory, variables affecting the DTA curves. Differences between TGA and DTA. General principles, instrumentation and applications. Differential scanning calorimetry (DSC): Basic principle, differences between DTA and DSC. Instrumentation, power compensated DSC, Heat flux DSC. Applications. Thermomechanical analysis. Dynamic mechanical analysis.
PG75T402A: Nuclear and Environmental Chemistry	UNIT-I:Radioactivity,NuclearReactions,NuclearPowerReactors– Radioactivity,determinationof halflife,Radioactivedecaykinetics,parent-daughterdecay-growth	Unit–I: Nanomaterials and ElectronMicroscopies.Nanomaterials:Introduction,terminology, novel optical properties,nanolayers,carbonnanotubes,

	UNIT-III: Environmental segments, Air pollution and Soil pollution: Air	UNIT-III: Air pollution and Water Pollution:
	UNIT-III: Environmental segments,	UNIT-III: Air pollution and Water
	procedures	
	including waste storage and disposal	¹⁴ C dating.
	doses. Nuclear waste management	irradiation). Radiometric titrations and
	procedures, permissible exposure	polymerization, medicine &, food
	Radiation protection, decontamination	chemistry/isotopes (radiation synthesis,
	Hazards in radiochemical work.	applications of radiation
	Biological effects of radiation,	technique, neutron activation analysis,
	Health and Safety Aspects:	isotopes: Radioactive techniques, tracer
		Radioanalytical techniques and
	· · · · · · · · · · · · · · · · · · ·	radioactive waste management.
	irradiation and radiation synthesis).	exposure of radiation dose and
	(radiation polymerization, food	effects of radiation, permissible
	applications of radiation chemistry	of liquids and solids. Health and safety aspects: Biological
	liquids and solids. Industrial	water. A brief introduction to radiolysis
	introduction to radiolysis of gases,	dosimeters. Radiation chemistry of
	(Fricke and ceric sulphate dosimeters). Radiation chemistry of water. A brief	Dosimetry: Fricke and ceric sulphate
	measurement of chemical dosimeters	radiation energy, G-value. Chemical
	radiation dosimetry-units and	fusion, nuclear reactor, units of
	Interaction of matter with radiation,	Nuclear reactions, nuclear fission and
	UNIT-II: Radiation Chemistry:	UNIT-II: Nuclear Chemistry:
	UNIT II. Dadiation Chamister	
		Nanosensors: Electrochemical sensors and biosensors.
		microscopy (AFM).
		microscopy (STM) and atomic force
		microscopies: Scanning tunneling
		microscopy (STEM). Scanning probe
		(TEM), scanning transmission electron
	applications of isotopes	transmission electron microscopy
	Medical, agricultural and industrial	electron microscopy (SEM),
	radiometric titration and C^{14} dating.	Electron microscopies: Scanning
	method, activation analysis,	control.
	analytical applications-isotope dilution	superlattices) and three-dimensional
	radioisotopes, Physico-chemical and	control (quantum wells and solid–state
	Synthesis of various useful	inorganic nanowires), two-dimensional
	Applications of Radioisotopes-	One-dimensional control (CNT's and
		method.
	introduction to breeder reactors.	combustion method and hydrothermal
	reactor. Safety measures. An	deposition, sol-gel synthesis,
	components of a nuclear power	vapour deposition, chemical vapour
	reactors, basic features and	synthesis of nanomaterials, physical
	fusion, Types of nuclear power	Solution–based and vapour–phase
	ions, Spallation, Nuclear fission and	Top-down and bottomup fabrication:
	nuclear reactions induced by heavy	nanoclusters, smart nanostructures.
	relationships, Secular and transient equilibria, Compund nucleus theory,	nanowires, quantum dots, nanocomposites, thin films, nanofoam,

Green house effect and acid rain. CO - industrial and transportation sources. SO_x -sources, ambient concentration, test methods, control techniques - scrubbing, limestone injection process. Ozone hole and CFC's. Photochemical smog and PAN. NO_x - sources, ambient concentration, test methods, thermodynamics and NO_x , control techniques. Particulates: size distribution. Bhopal gas tragedy. Noise pollution Composition of soil - Inorganic and organic components in soil, micro and macro nutrients, nitrogen and sulfur pathways. Soil pollution: Classification of pollutants and their characteristics, sources, prevention and control	green house effect and acid rain. Carbon monoxide: Industrial and transportation sources. SO_x -sources, control technique, scrubbing, limestone injection process. Ozone hole and CFC's. Photochemical smog and PAN. NO _x : sources and NO _x , control techniques. Particulates: Size distribution. Bhopal gas tragedy. Noise pollution. Origin of waste water, types, water pollutants and their effects. Sources of water pollution: Domestic, industrial, agricultural soil and radioactive wastes as source of pollution. Measurement of colour, turbidity, total solids, acidity, alkalinity, hardness, sulphate, fluoride, phosphate and different forms of nitrogen in natural and polluted water. Determination and significance of BOD, COD and TOC. Pesticides as water pollutants and analysis. Toxic chemicals in the environment, impact of toxic chemicals on enzymes. Heavy metal pollution. Chemical speciation:Biochemical effects of heavy metals (Hg, As, Pb, Se).
UNIT-IV: Hydrologic cycle, sources, criteria and standards of water quality- safe drinking water. Public health significance and measurement of colour, turbidity, total solids, acidity, alkalinity, hardness, sulphate, fluoride, phosphate and different forms of nitrogen in natural and polluted water. Determination of BOD, COD and TOC. Toxic chemicals in the environment, impact of toxic chemicals on enzymes. Detergents - pollution aspects, Pesticides - pollution of surface water. Heavy metal pollution. Chemical speciation- biochemical effects of heavy metals (Hg, As, Pb, Se), carbon monoxide, nitrogen oxides, sulphur oxides and hydrocarbon. Treatment of industrial liquid wastes.	

PG75T403A:	UNIT-I: Organometallic Chemistry:	UNIT-I: Organometallic Chemistry:
Organometallic	Chemistry of Organometallic	Chemistry of organometallic
Chemistry and	Compounds with π - bonding ligands :	compounds with π -bonding ligands:
Solid State	Synthesis, Structure, Spectroscopy,	Synthesis, structure, sSpectroscopy,
Chemistry	Reactions and bonding in metal –	reactions and bonding in metal-carbon
	carbon π - bonded systems involving	π -bonded systems involving di-hapto
	dihapto to hexahapto ligands viz,	to hexa-hapto ligands viz, olefins,
	Olefins, acetylenes, allylic moieties,	acetylenes, allylic moieties, butadienes,
	butadienes, cyclobutadienes,	cyclobutadienes, cyclopentadienes and
	cyclopentadienes and arenes.	arenes. Organometallic polymers.
	UNIT-II: Fluxinol behaviour of	UNIT-II: Fluxinol behaviour of
	Organometallic Compounds	Organometallic Compounds:
	Homogeneous and heterogeneous	Rates of rearrangement and techniques
	catalysis involving metal complexes	of study. Stereochemical non-regidity
	and Organometallic Complexes,	in organometallic compounds, ring
	Oxidative additions, reductive	whizzing in η^1 –Cp complexes,
	elimination, insertion and deinsertion	interchange of η^1 -and η^5 -Cp rings,
	reactions, hydrogenation,	allyl and allene complexes. Scrambling
	hydroformylation, isomerisation,	of carbonyl groups in metal carbonyls.
	carboxylation, and polymerisation,	Homogeneous and heterogeneous
	water gas shift reaction.	catalysis invivolng metal complexes
	Organometallic reagents in organic	and organometallic complexes.
	synthesis : organo iron, organo copper	Teminology in catalysis, oxidative
	and organo palladium compounds.	additions and oxidative coupling
		reductive elimination, insertion
		reactions, hydrogenation of alkenes and
		related reactions, hydroformylation
		(Monsanto, Cativa and Wacker
		Processes), carbonylation,
		isomerisation and olefinpolymerisation
		oligomerisation reactions. Water gas
		shift reaction.
		Organometallic reagents in organic
		synthesis: Organo-iron, organo-copper
		and organo-palladium compounds.
	UNIT-III: Solid State Chemistry:	UNIT–III: Solid State Chemistry:
	Electrical properties : Survey of	
	electrical properties and materials.	electrical properties and materials.
	Super conductivity : Nature and	Super conductivity: Nature and
	properties of Super conductivity	properties of super conductivity
	materials, Meisner effect, Types I and	materials, Meisner effect, type–I and II
	II Super conductors, Theories, high	super conductors, theories, high
	temperature oxide Super conductors,	temperature oxide super conductors,
	Junction involving metal - Super	junction involving metal, super
	conductor - Super conductor.	conductor and super conductor.
	Applications.	Applications.
	Ionic conductivity – Alkali halides:	Ionic conductivity: Alkali
	Vacancy conduction. Silver chloride:	halides-vacancy conduction. Silver
	interstitial conduction.	chloride-interstitial conduction. Solid
L	l	

	Solid electrolytes : β - Alumina, AgI	electrolytes: β -alumina, AgI and Ag ⁺
	and Ag+ ion solid electrolytes. Anion	• • • • •
	conductors, requirements for	conductors, requirements for
	conductivity, Applications.	conductivity. Applications.
	Magnetic properties : Mechanism of	Magnetic properties: Mechanism of
	ferro and antiferro magnetic ordering,	ferro- and anti-ferro magnetic
	selected examples of magnetic	ordering, selected examples of
	materials, their structures and	magnetic materials, their structures and
	properties ; metals and alloys,	properties, metals and alloys, transition
	transition metal oxides, spines,	metal oxides, spines, garnets,
	garnets, ilemenites, perovskites,	ilemenites, perovskites, magneto
	magneto plumbites, applications,	plumbites, applications and structure-
	structure – property relation.	property relation.
		Optical properties: Luminescence and
	Optical properties : Luminescence and	phosphors, configurational coordinate
	phosphors, configurational coordinate	model, some phosphor material,
	model, some phosphor material,	antistokes, phosphors and lasers.
	antistokes, phosphors, lasers.	
	UNIT-IV: Mechanical properties	UNIT-IV: Mechanical Properties
	and dislocations in solids : Edge	and Structural Transformation of
	dislocations, screw dislocations.	Solids:
	Structural transformation of solids :	Mechanical properties & dislocations in
	Solid solutions : Hume – Rothery	solids: Edge dislocations & screw
	rules, substitutional solid solutions and	dislocations.
	interstitial solid solutions. solid	Structural transformation of solids:
	solution mechanism, experimental	Solid solutions, Hume-Rothery rules,
	methods for studying solid solutions	substitutional solid solutions and
	(x- ray powder diffraction and density	interstitial solid solutions, solid solution
	measurements).	mechanism, experimental methods for
	Alloy systems : Phase diagrams, two	studying solid solutions (X-ray powder
	and three component systems, study of	diffraction and density measurements).
	alloy systems; steels with reference to	Alloy systems: Phase diagrams, two
	iron - carbon systems, copper - zinc	and three component systems, study of
	system.	alloy systems, steels with reference to
		iron, carbon systems and copper- zinc
		system.
PG75D404A:	It may include inplant training in	The project work may include in-plant
Project Work	Industries/short term work in the	training in industries/short term work in
	Department or other educational	the department/other educational
	Institutions/ R & D organizations/	institutions/R&D organizations/data
	Data Mining/ Review of current	mining/review of current
	literature/ theoretical	literature/theoretical methods/computer
	methods/computer applications, etc.	applications. Experimental work may
	Experimental work may involve studies on	involve studies on
		synthesis/measurements/study of
	synthesis/characterization/properties/m easurements/activities for	properties/characterization by physical
	reported/unreported research or any	methods/activities for
	suitable combination thereof.	reported/unreported research or any suitable combination thereof.
	In case of the students who will work	
	In case of the students who will WORK	In case of the students who would work

	outside the campus, the supervising staff member shall visit the place atleast once during the tenure and hence he/she may be eligible for TA/DA as per the University rules.	outside the campus, the supervising staff member may visit to the work place at least once during the period and may be eligible for TA–DA as per the University rules.
PG75P401A: Lab Course In Inorganic Chemistry	 a) Use of oxine, salicylaldoxime and DMG in the separation and estimation by volumetric/ gravimetric method i) Cu + Ni, ii) Al + Mg. iii). Ni in presence of Cr and Fe. b) Analysis of Ores: Hematite and Dolomite. c) Analysis of alloy: Boron, Stainless steel and Cu-Nickel alloy. 	 Determination of available K/Na in soil by flame photometry Nephelometric/Turbidimetric determination of sulphate/phosphate. Cyclic voltammetric studies on potassium ferrocyanide/ potassium ferricyanide. TG-DTA studies of various hydrated solids-CuSO₄.5H₂O, CaC₂O₄.H₂O and MgC₂O₄ mixture. Determination of fluoride in drinking water by spectrophotometry. Estimation of total cation concentration in water by ion-exchange method. Determination of iron in mustard seed by spectrophotometry. Determination of copper by potentiometric titration using EDTA. Conductometric determination of total acidity of waste water. Analysis of copper/calcium by PFHS method Analysis of Na₂CO₃ and NaHCO₃ in baking soda by acid base titration.
PG75P402A: Lab Course In Inorganic Chemistry	 Water analysis 1. Physico-chemical parameters (pH, colour, temperature and turbidity) for characterizing water quality. 2. Concentration of total dissolved solids in a given water sample. 3. Alkalinity in a given water sample. 4. Hardness of a given water sample a) Temporary and b) Permanent hardness 5. Chloride ion concentration in a given water sample. 6. Dissolved oxygen in a given water sample 7. Reducing power of a given water sample Determination of Na⁺ and K⁺ in given water sample 	 Determination of COD of a water sample. Determination of phosphates in detergents. Determination of dissolved oxygen (DO) by Winkler's method. Determination of nitrate & nitrite in water samples and sea water. Analysis of heavy metals in waste water and sea water (Pb, Hg etc. by spectrophotometry). Determination of alkalinity of water samples. Determination of phosphoric acid content in soft drinks. Hardness of water by soap solution

PG75P403A: Lab Course In Inorganica. Use of cation resin b. Use of anion resin c. Analysis of soil sample d. Analysis of fertilizer e. Analysis of cement1. Determination of total acidity of vinegar and wines by acid-base titration. 2. Determination of calcium in calcium gluconate/calcium carbonate tablets/injections and of calcium in milk powder by EDTA titration. 3. Determination of saccharin in tablets by precipitation titration. 5. Analysis of Type metal-Sn gravimetrically and Sb titrimetrically using KBrOs7. Determination of magnesium in milk of magnesium tablets by ion-exchange chromatography. 8. Conductometry (ii) Sulphate by precipitation titration after ion-exchange separation (iii) Sugar by Benedict's reagent. 10. Analysis of blood for (i) cholesterol by spectrophotometry and (ii)			10. Preparation and characterization of nanoparticles.
clear contact by acid -base infation	Lab Course In Inorganic	b. Use of anion resinc. Analysis of soil sampled. Analysis of fertilizer	 vinegar and wines by acid-base titration. 2. Determination of calcium in calcium gluconate/calcium carbonate tablets/injections and of calcium in milk powder by EDTA titration. 3. Determination of aluminium and magnesium in antacids by EDTA titration. 4. Determination of saccharin in tablets by precipitation titration. 5. Analysis of cement. 6. Analysis of Type metal–Sn gravimetrically and Sb titrimetrically using KBrO₃ 7. Determination of magnesium in milk of magnesium tablets by ion-exchange chromatography. 8. Conductometric titration of sodium acetate with HCl and NH4Cl with NaOH. 9. Analysis of urine for (i) urea and uric acid by titrimetry snd spectrophotometry (ii) Sulphate by precipitation titration after ion–exchange separation (iii) Sugar by Benedict's reagent. 10. Analysis of blood for (i) cholesterol

THIRD SEMESTER (ORGANIC CHEMISTRY)

PG75T301B:	UNIT-I	UNIT–I
Organic	Electronic, Chiroptical and Vibrational	Electronic and Vibrational Spectroscopy:
spectroscopy	Spectroscopy:	Introduction, energy considerations,
	Electronic and Chiroptical Spectroscopy	experimental methods, Beer-Lambert's law,
	:Introduction. Energy considerations.	theory and classification of electronic
	Experimental methods. Beer-Lambert's	transitions, terminology, substituent and
	law. Theory and classification of	solvent effects.
	electronic transitions. Terminology,	UV spectral study of alkenes, dienes,
	substituent and solvent effects.	polyenes, carbonyl and aromatic compounds.
	UV spectral study of alkenes, dienes,	Steric effects, isobestic points, model
	polyenes, carbonyl and aromatic	compounds and charge transfer bands.
	compounds. Steric effects, isobestic	Vibrational Spectroscopy: Introduction,
	points, model compounds, charge transfer	experimental methods, units, notation and
	bands.	regions. FT-IR, sampling techniques,
	Vibrational Spectroscopy: Introduction	complementarity of IR and Raman.
	and Experimental methods. Units,	Fundamental vibrations, overtones, Fermi
	Notation and Regions. Dispersive and	resonance, group frequencies, factors
	FT-IR. Sampling techniques.	affecting group frequencies: Conjugation,
	Complimentarity of IR and Raman.	inductive, resonance, steric effects.
	Fundamental vibrations, overtones,	Mechanical coupling, applications of IR in
	Group frequencies, factors affecting	the study of H–bonding, stereoisomerism
	group frequencies; Conjugation,	and tautomerism.
	inductive, resonance, steric effects.	Identification of the following organic
	Mechanical coupling, Fermi resonance,	compounds by IR: Alkanes, alkenes, alkynes,
	Applications of IR in the study of H-	aromatic compounds, aldehydes, ketones,
	bonding, stereoisomerism, tautomerism.	alcohols, thiols, acids, acid chlorides,
	Identification of the following organic	amides, amines, esters, halides, nitro
	compounds by IR : Alkanes, Alkenes,	compounds, etc.
	Alkynes, Aromatic compounds,	
	Aldehydes, Ketones, Alcohols, Thiols,	
	Acids, Acid chlorides, Amides, Amines,	
	Esters, halides, nitro compounds, etc.	
	UNIT-II	UNIT-II
	Proton Magnetic Resonance	Proton Magnetic Resonance
	Spectroscopy:	Spectroscopy:
	Introduction- Magnetic properties of	Introduction, magnetic properties of nuclei,
	nuclei- Resonance condition. Field	resonance condition. Field frequency
	Frequency diagram. Precession of Nuclei,	diagram, precession of nuclei, relaxation.
	Relaxation- CW and PFT-methods-	Intstrumentation: CW and FT–NMR
	Instrumentation and Sample handling.	techniques. Sample handling.
	Chemical shift- Mechanism of shielding	Chemical shift, mechanism of shielding and
	and deshielding- in Alkanes, Alkyl	deshielding in alkanes, alkyl halides, alkenes,
	halides, Alkenes, Aromatic compounds,	aromatic compounds, carbonyl compounds
	Carbonyl compounds and Annulenes.	and annulenes. Chemical shifts of different
	Chemical shifts of Different types of	
	Organic compounds. Empirical rules.	Equivalence of protons: Chemical and
	Spin-spin coupling, geminal-vicinal	magnetic equivalence. Spin-spin coupling,
	coupling-Relative intensities. Karplus	magnetie equivalence. Spin-Spin coupling,
	coupring-relative intensities. Raipius	

equation-Curve. Equivalence of protons- chemical and magnetic equivalence. Spin-systems First order and second order patterns. Long Range coupling – Spin decoupling, CIDNP, NOE. Lanthanide Shift reagents. Proton attached to elements other than carbon. Exchange phenomena, Temperature effects	geminal-vicinal coupling, relative intensities. Karplus equation-Curve. Spin-systems, first order and second order patterns. Long range coupling: Spin decoupling, CIDNP and NOE. Lanthanide Shift reagents. Proton attached to elements other than carbon (OH, NH and SH). Exchange phenomena and temperature effects.
UNIT-III	UNIT-III
Multi-Nuclear NMR and Correlation	Multi–Nuclear NMR and Correlation
Spectroscopy: ¹³ C-NMR. Broad Band and Off resonance decoupling methods of detection. ¹³ C- Chemical shifts of different classes of Organic compounds- Alkanes, Alkyl halides, Alkenes, Alcohols, Ethers, Carbonyl compounds and Aromatic compounds. ¹³ C – H Coupling DEPT. Introductory aspects of ¹⁵ N, ¹⁹ F, ³¹ P - NMR. Correlation NMR Spectroscopy: Theory, Pulse sequences. FT-Methods. ¹ H - ¹ H (COSY) and ¹³ C – H (HETEROCOSY) Methods	Spectroscopy: ¹³ C–NMR, broad band and off resonance decoupling methods of detection. ¹³ C–chemical shifts of different classes of organic compounds: Alkanes, alkyl halides, alkenes, alcohols, ethers, carbonyl compounds and aromatic compounds. ¹³ C– ¹ H coupling DEPT. Introductory aspects of ¹⁵ N–, ¹⁹ F–, ³¹ P–, ¹⁰ B–, ¹¹ B–NMR. Correlation NMR Spectroscopy: Theory, pulse sequences. FT–methods. ¹ H– ¹ H (COSY) and ¹³ C– ¹ H (HETEROCOSY) methods
UNIT-IV	UNIT-IV
Mass Spectroscopy and Composite	Mass Spectrometry and Composite
Problems: Ionisation and Mass analysis. Instrumentation, methods of ionization, EI, CI, DI, SI – Methods. Fragmentation : principles, odd and EE ions, molecular ion and base peak, Nitrogen rule, metastable ions. Isotope effects in chloro and bromo compounds. Stevenson rule. Fragmentation of : i) Normal and Branched Alkanes. ii) Alkenes. iii) benzene and its derivatives. iv) Alcohols. v) Aldehydes. vi) Ketones. vii) Acids. viii) Esters. ix) Ethers. x) Amines. xi) Nitro compounds. xii) Halo compounds. xii) Peptides McLafferty and McLafferty + 1 rearrangement. Calculation of molecular formula. Composite problems: Calculation of H- deficiency Index.	Problems: Ionisation and mass analysis. Instrumentation, methods of ionization, EI, CI, DI, SI methods. Fragmentation: Principles, odd electron (OE ⁺⁺) and even electron (EE ⁺) ions, molecular ion and base peak, nitrogen rule, metastable ions. Isotope effects in chloro and bromo compounds. Stevenson rule. Fragmentation of: (i) normal and branched alkanes. (ii) alkenes (iii) benzene and its derivatives (iv) alcohols (v) aldehydes (vi) ketones (vii) acids (viii) esters (ix) ethers (x) amines (xi) nitro compounds (xii) halo compounds (xii) peptides. McLafferty and McLafferty + 1 rearrangement. Calculation of molecular formula. Calculation of H–deficiency index. Composite problems: Applications of UV, IR, NMR and MS methods and chemical reactions in structure elucidation of organic

	Applications of UV, IR, NMR and MS methods and chemical reactions in structure elucidation of organic compounds	compounds.
PG75T302B: Stereochemistry and Reaction Mechanism	UNIT–I Dynamic Stereochemistry: Stereoselectivity in organic synthesis, stereospecific and stereoselective reaction, Principle of stereoselectivity, stereoselectivity in addition, elimination, substitution reaction. Asymmetric synthesis, enantioselective and diastereoselectivity in acyclic system, addition of nucleohphiles to carbonyl group, correalation of configuration, Cram's rule and Prelog's rule for diastereselection. ORD – Cotton effect, Octant and Haloketone rules, Applications in the determination of configuration of cyclic and steroidal ketones. Asymmetric epoxidation, Stereoselectivity in carbene addition, stereochemistry of catalytic hydrogenation. Asymmetric transformations.	UNIT–I Dynamic Stereochemistry: Stereoselectivity in organic synthesis, stereospecific and stereoselective reaction, principle of stereoselectivity, stereoselectivity in addition, elimination and substitution reaction. Asymmeteric Synthesis: Chiral pool synthesis, enantioselectivity and diastereoselectivity in acyclic system, addition of nucleohphiles to carbonyl group, Cram's rule and Prelog's rule for diastereselection. 1,2–Addition predictions: Various outcomes using predictive models such as Cram chelate and Felkin–Anh. Chiral Auxiliaries: Chiral auxiliaries in aldol condensations and Diels–Alder reaction. Oxazolidinones and chiral sulphoxides. Chiral Reagents: Isopinocamphenylboranes, BINOL and DIBAL. Chiral Catalysts: Calculation of enantiomeric excess, asymmetric epoxidation–Sharpless and Jacobsen Katsuki asymmetric epoxidation, epoxidation using dioxiranes. Stereochemistry of catalytic hydrogenation; Metal (Pd, Pt, Ni) catalyzed hydrogenation, diimide reduction, rhodium and Ruthenium catalysts with chiral phosphine ligands like (R)–PROPHOS, (R)–BINAP and (R, R)–DIOP. Asymmetric transformations, stereochemistry of carbene and nitrene addition.
	UNIT-II Stereochemistry of Compounds other than Carbon: Stereochemistry of Nitrogen Compounds : Quartenary ammonium salts, amines, tertiary amine oxides, oximes - determination of configuration of aldoximes and ketoximes, Stereochemistry of compounds (Cyclic and acyclic) containing nitrogen.	UNIT–II Stereochemistry of Compounds other than Carbon: Stereochemistry of nitrogen compounds: Quaternary ammonium salts, amines, tertiary amine oxides, oximes, determination of configuration of aldoximes and ketoximes, stereochemistry of compounds (cyclic and acyclic) containing nitrogen. Stereochemistry of Phosphorus compounds,

	StereochemistryofPhosphoruscompounds,StereochemistryofArseniccompoundsandStereochemistryofSulphurcompounds.StereochemistryofSiliconcompounds.UNIT-IIIReaction Mechanism – I:Nucleophilic substitution at allylic andtrigonal carbon atom.Neighbouring group participation.Participation of σ , π cyclpropane aromaticrings in nucleophilic substitution reaction.Nucleophilic substitution at Silicon.Formation, structure, stability andreactions of Free radicals (ESR of organicfree radicals), Nitrenes, Ylides andEnaminesStructure, Stability and	UNIT–III Reaction Mechanism–I: Nucleophilic substitution at allylic and trigonal carbon atom, Tsuji–Trost reaction. Neighbouring group participation: Definition, participation of σ , π cyclpropane aromatic rings in nucleophilic substitution reaction. Nucleophilic substitution at silicon. Addition Reactions: Electrophilic addition across alkenes, <i>cis- and trans</i> -alkenes and dienes. Addition of nitrogen, oxygen and aulphur nucleophiles across carbonyl
	UNIT-IV Reaction Mechanism – II: Addition and Elimination Reactions. Addition Reactions: Electrophilic addition across Alkenes, cis-trans alkenes, Dienes. Addition of Nitrogen, Oxygen and Sulphur nucleophiles across carbonyl compounds. Elimination Reactions: E ₂ , E ₁ , E ₁ CB pathways. Stereochemistry, Product proportions in Dehydration of Alcohols, Alkyl halides (chiral and achiral), Hoffmann and Saytzeff rules. Pyrolytic eliminations.	compounds. UNIT–IV Reactive Intermediates and Activating agents Reactive Intermediates: Formation, structure, stability and reactions of the following reactive intermediates: Carbocations (classical and non–classical), carbanions, carbenes (identification by ¹ H NMR and ¹³ C NMR), carbenoids, free radicals (ESR of organic free radicals), nitrenes, ylides, Wittig and Tebbe olefination, enamines and Stork enamine reactions. Applications of the following in organic synthesis: Acetyl chloride, antimony pentachloride, borontrifluoride etherate, copper (I) trifluoromethane sulphonate, ethylaluminium dichloride, lithium halides and lithium perchlorides.
PG75T303B: Chemistry of Natural Products	UNIT-I Steroids and Steroidal Hormones: Structure, synthesis, stereochemistry and spectral features of : Cholesterol and Ergosterol. Steroidal Hormones : Estrogenic hormones – Estrone. Androgenic hormones – Androsterone. Corpus Luteum hormones – Progesterone. Transformations in steroids and hormones.	UNIT–I Steroids and Steroidal Hormones: Structure, synthesis, stereochemistry and spectral features of cholesterol and ergosterol. Steroidal Hormones: Estrogenic hormones–estrone, androgenic hormones–androsterone, corpus luteum hormones–progesterone.Transformations in steroids and hormones

UNIT–II Plant Products: Structure, synthesis, stereochemistry and spectral properties (wherever applicable) of the following : Alkaloids: Papaverine, Reserpine, Morphine, Lysergic acid, Physostigmine. Photochemical synthesis of Nuciferene, Corydaline, Tylophorine. Terpenoids: Zingiberene, α-Pinene, Gibberillic acid, Camphor, Caryophyllene, Abietic acid, Farnesol.	UNIT-II Plant Products: Structure, synthesis, stereochemistry and spectral properties (wherever applicable) of the following: Alkaloids: Papaverine, reserpine, morphine, lysergic acid, physostigmine, yohimbine. Photochemical synthesis of nuciferene, corydaline and tylophorine. Terpenoids: α -Cadeine, zingiberene, α -Pinene, gibberillic acid, camphor, caryophyllene, abietic acid and farnesol.
UNIT-III Prostaglandins and Lipids: Prostaglandins: Introduction, nomenclature, classification and biological role of Prostaglandins. Structure elucidation and stereochemistry of PGE1. Synthesis of prostaglandins by Corey and Stork routes. Lipids: Sphingolipids and Glycolipids, Naturally occurring fatty acids and their triglycerides, Essential fatty acids, Unusual fatty acids, Methods of isolation: Gunstone's partition method. Reactions of fatty acids – Fischer and trans esterification, Oxidation and Acyl group transfer reactions. Analytical values – Cetane number. Applications of GC, IR, ¹ H NMR, ¹³ C NMR and MS techniques in the study of their structures. Emulsions and Biodiesel. Oleochemicals and their applications in the synthesis of heterocycles.	UNIT-III Prostaglandins and Lipids: Prostaglandins: Introduction, nomenclature, classification and biological role of prostaglandins. Structure elucidation and stereochemistry of PGE1. Synthesis of prostaglandins by Corey and Stork routes. Lipids: Sphingolipids, phospholipids, cyanolipids and glycolipids, naturally occurring fatty acids and their triglycerides, essential fatty acids, unusual fatty acids, methods of isolation: Gunstone's partition method. Reactions of fatty acids: Fischer- and trans-esterification, oxidation, hydrogenation, margarine and acyl group transfer reactions. Analytical values: Cetane number. Applications of GC, IR, ¹ H–NMR, ¹³ C–NMR and MS techniques in the study of their structures. Emulsions and biodiesel. Oleochemicals and their applications in the synthesis of heterocycles
UNIT-IV Biomolecules: Structure and synthesis of Nucleosides- Nucleotides. Methods of formation of internucleotide bonds. Polynucleotides, structure, formation and hydrolysis products of DNA and RNA. Role of nucleic acids in protein synthesis. Genetic code.	UNIT-IV Biomolecules: Structure and synthesis of nucleosides and nucleotides. Methods of formation of internucleotide bonds. Polynucleotides, structure, formation and hydrolysis products of DNA and RNA. Role of nucleic acids in protein synthesis. Genetic code. Peptide bond formation, structure and

	Peptide bond formation, Structure and Stereochemistry Peptide linkage, Primary structure of peptides. C-terminal amino acid determination (Hydrazinolysis), N- terminal amino acid determination. Edman's and Sanger's method.Application of Dansyl chloride, Partial hydrolysis of peptides. Mass- spectra of peptides. Synthesis of peptides: Oxytocin, Glutathione, Merrifield Solid phase peptide synthesis. Structure of proteins.	stereochemistry. Peptide linkage, primary structure of peptides. C-terminal amino acid determination (hydrazinolysis), N-terminal amino acid determination. Edman's and Sanger's method. Application of dansyl chloride, partial hydrolysis of peptides. Mass spectra of peptides. Synthesis of Peptides: Oxytocin, glutathione, merrifield Solid phase peptide synthesis. Structure of proteins. Reaction and mechanism of biochemical reactions associated with thiamine pyrophosphate, pyridoxal phosphate, Vit B ₁₂ , flavin and NADH.
PG75P301B : Lab Course in Organic Chemistry	Identification of the nature, bulk separation, purification and qualitative analysis (using ether) of the binary mixture of the following classes: Acids, bases, phenols and neutral compounds (without derivatives).	Identification of the nature, bulk separation, purification and qualitative analysis (using ether) of the binary mixture of the following classes: Acids, bases, phenols and neutral compounds (without derivatives).
PG75P302B : Lab Course in Organic Chemistry	1. Applications of computers in structure, stereochemistry, mechanism and conformational studies of organic compounds.	1) Applications of computers in structure, stereochemistry, mechanism and conformational studies of organic compounds.
	2. Chromatographic techniques: TLC and column chromatography.	2) Chromatographic techniques: TLC and column chromatography.
	3. Preparation of derivatives.	3) Preparation of derivatives.
PG75P303B : Lab	Isolation, Characterization of Natural	Isolation, Characterization of Natural
Course in Organic	products:	products:
Chemistry	1. Cysteine from human hair.	1) Cysteine from human hair.
	2. Hesperidine from orange peel.	2) Hesperidine from orange peel.
	3. Caffeine from tea leaves.	3) Caffeine from tea leaves.
	4. Myristine from nutmug.	4) Myristine from nutmug.
	5. Piperine form black pepper.	5) Piperine form black pepper.
	6. Azaleic acid from castor oil.	6) Azaleic acid from castor oil.
	Lycopene from tomato	Lycopene from tomato

FOURTH SEMESTER (ORGANIC CHEMISTRY)

PG75T401B		
PG75T401B: Organic Synthesis	UNIT – 1 Retrosynthetic Analysis Disconnection approach – Terminology, synthon, synthetic equivalent, functional group interconversion. One group $C - X$ and two group disconnections. Applications of $C - C$ disconnection in the synthesis of substituted 1,2- 1,3- and 1,4- bifunctional compounds. Retrosynthetic analysis and synthetic route for Alcohols, Benzocaine, Acetone cyanohydrin, p-Methoxy acetophenone, 6-Methyl quinoline, Pirindol,	UNIT-1 Synthetic Design and retrosynthetic analysis: Protecting groups in organic synthesis: Principe of protection, protection of hydroxyl (-OH), amino (-NH ₂ , -NH), carboxylic (-COOH), carbony (RCOR') groups, their synthetic applications and methods of deprotection. Retrosynthetic analysis: Terminology, synthon, synthetic equivalent, functional group interconversion and disconnection approach, one group C-X and two group
	6-methoxy indole –3- acetic acid. Application to the synthesis of Juvabione, Taxol, Longifolene, Prelog- Djerassi lactone.	disconnections. Applications of C–C disconnection in the synthesis of substituted $1,1-$, $1,2-$, $1,3-$ and $1,4-$ bifunctional compounds. Retrosynthetic analysis and forward synthesis for alcohols, benzocaine, acetone cyanohydrin, <i>p</i> -methoxy acetophenone, 6-methyl quinoline, pirindol, 6-methoxy indole -3-acetic acid. Application to the synthesis of juvabione, taxol, longifolene, Prelog–Djerassi lactone.
	UNIT – II Oxidations and Reductions Oxidation of organic compounds using KMnO4, PCC, OsO4, CrO3, K2Cr2O7, SeO2, Pb(OAc)4, HIO4, Oxygen, Oppaneur oxidation, Swern oxidation. Hydroboraton – Isomerisation and oxidation. Application in the synthesis of Esters, E - Z alkenes, Conjugated dienes, Alkynes. Reductions Reductions Reduction of organic compounds using the following reagents: LiAlH4, NaBH4, Stereochemistry of carbonyl reduction, Dibal-H ,Dissolving metal reduction. Birch Reduction, Wolf-Kishner Reduction.(Huang-Minlon Modification)	UNIT – II Oxidations and Reductions: Oxidations: Oxidation of organic compounds using KMnO ₄ , PCC, OsO ₄ , CrO ₃ , K ₂ Cr ₂ O ₇ , SeO ₂ , Pb(OAc) ₄ , HIO ₄ , oxygen, Oppaneur oxidation, Swern oxidation, ozonolysis. Hydroboraton– isomerisation and oxidation. Application in the synthesis of esters, E–Z alkenes, conjugated dienes, alkynes. Conditions: Catalytic oxidation and Pt, photosensitized oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. Reductions: Reduction of organic compounds using the following reagents: LiAlH ₄ , NaBH ₄ , lithium hydridoalkoxyaluminates, MPV reduction, catalytic hydrogenation, dissolving metal reduction (including acylion condensation), Clemmensen reduction. Birch Reduction, Wolf–Kishner reduction

	UNIT – III Newer reactions Mechanism and Strategic applications of the following Named reactions : i) Suzuki coupling. ii) Prins reaction iii) Shapiro reaction. iv) Mitsunobu reaction. v) Robinson annulation. v) Robinson annulation. vi) Junjappa – Ila aromatic and heteroaromatic annulation. vii) Pauson-Khand reaction. viii) Simon -Smith reaction.	(Huang–Minlon modification), Raney–Ni desulphurisation UNIT–III Newer Reactions: Mechanism and strategic applications of the following named reactions: Suzuki coupling, Prins reaction, Shapiro reaction, Mitsunobu reaction, Robinson annulation, Junjappa–Ila aromatic and heteroaromatic annulations, Pauson–Khand reaction, Simon–Smith reaction, Huisgen 1,3–dipolar cycloaddition reaction, O'Donnell Aminoacid synthesis, Heck arylation, Desmartin reaction, Houben–Hoesch reaction, Sonogashira reaction, Buchwald–Hartwig reaction.
	 ix) Huisgen 1,3-dipolar cycloaddition reaction x) Heck arylation xi) Hoffmann – Loffler- Freytag Reaction. Modern Techniques in Organic Synthesis. Brief outlines of Microwave, Ultra-sound, Clay catalysed techniques and use of Ionic liquids and polymer supports in Organic synthesis. 	
	UNIT – IV Newer Reagents and Reactions Methods of preparation, mechanism of action and application of the following reagents in Organic synthesis: i) DCC. ii) 1,3-Dithiane. iii) LDA. iv) DDQ. v) Tributyl tinhydride. vi) Wilkinson Catalyst. vii) Crown ethers. viii) Trimethyl silyl iodide. ix) Bakers yeast. x) Gilman reagent. xi) Peterson reaction. Woodward and Prevost hydroxylations.	UNIT – IV Newer Reagents: Methods of preparation, mechanism of action and application of the following reagents in Organic synthesis: DCC, 1,3–dithiane (Corey–Seebach reaction), LDA, DDQ, Wilkinson catalyst, crown ethers, trimethyl silyl iodide, trimethyl silyl cyanide, hydrosilane, Iwanov reagent, Peterson reaction, Julia olefination, Woodward and Prevost hydroxylations, Lawesson's reagent
PG75T402B: Photochemistry and Pericyclic Reactions	UNIT – I Organic Photochemistry: Principles of photochemistry, photochemical processes, Energy transfer and photosensitisation, Photochemical Reactions :	UNIT–I Organic Photochemistry: Bonding and antibonding orbitals, principles of photochemistry, photochemical processes, singlet and triplet states, energy transfer and photosensitisation, photochemical reactions,

Photoreduction, Norish type – I, type – II cleavages- Di-Pi methane rearrangement, Optical pumping. Photochemistry of cyclohexadienones, Photo Fries Rearrangement, Paterno Buchi reaction. Photochemistry of alkenes, benzenes, cyclohexanes, Yang cyclisation. Photochemistry of vision.	photoreduction, Photochemical fragmentation reactions: Norish type–I, type – II cleavages (Yang cyclisation)–di–pi methane rearrangement, optical pumping, photochemistry of cyclohexadienones, photo–Fries rearrangement, Paternò–Büchi reaction, photochemistry of alkenes, benzenes, cyclohexanes and photochemistry of vision.
UNIT – II Pericyclic Reactions: Classification and features, Molecular orbital symmetry. Frontier orbitals of ethylene, 1,3-butadiene, 1,3,5-hexatriene and allyl systems. Electrocyclic processes: Woodward Hoffmann rules for 4n and 4n + 2 π systems. Cycloaddition reactions : Diels-Alder reaction, (2+2) and (4+2) cycloaddition reaction, Supra facial and Antra facial addition. Significance of Reactions : Sigmatropic rearrangement, supra and antra facial hydrogen shifts. Claisen Cope, oxy cope and aza cope Rearrangements. Vitamin – D group isomerisations.	UNIT–II Pericyclic Reactions: Pericyclic reactions: Classification and features, molecular orbital symmetry, frontier orbitals of ethylene, 1,3–butadiene, 1,3,5–hexatriene and allyl systems. Electrocyclic processes: Introduction, Woodward–Hoffmann rules for 4n– and $(4n+2)-\pi$ systems, stereochemistry under thermal and photochemical conditions. Cycloaddition reactions: Introduction, supra facial and antra facial addition, [2+2] and [4+2] cycloaddition reaction (Diels–Alder reaction) FMO analysis under thermal and photochemical conditions. Sigmatropic rearrangements: Classification, FMO approach for [1,3], [1,5] and [3,3] sigmatropic rearrangements, supra and antra facial hydrogen shifts. Walk, Claisen–Cope, oxy–Cope and aza–Cope rearrangements. Vitamin-D group isomerizations
UNIT-III Molecular Rearrangement: Classification and general mechanistic pattern for electrophile, free radical and nucleophile rearrangement. Mechanisms of the following rearrangement : i) C – C migration : Pinacol-Pinacolone, Dienone- Phenol, Benzilic, Favorskii, Neber, Sommelet-Hauser, Anderson, Stevens, Smiles, Shapiro, Fritsch-Butenberg- Wiechell ii) C – N migration : Benzidine rearrangement.	UNIT-III Molecular Rearrangement: Molecular Rearrangement: Classification and general mechanistic pattern for electrophile, free radical and nucleophile rearrangement. Mechanisms of the following rearrangement: (i) C-C migration: Wagner-Meerwein, pinacol-pinacolone, dienone-phenol, benzilic, Favorskii, Sommelet-Hauser, Stevens, Smiles, Fritsch-Butenberg- Wiechell. (ii) C-N migration: Benzidine rearrangement, Neber, Beckmann, Hofmann, Curtius, Lossen, Schmidt. (iii) C-O migration: Baeyer-Viliiger, Dakin, Payne (including <i>aza</i> and <i>thia</i>),

	iii) C –O migration : Baeyer-Viliiger. iv) O-C migration : Baker- Venkataraman, Fries and Wittig rearrangements.	hydroperoxide, Crigee, Rupe, Ferrier, Petasis, Bamford–Stevens. (iv) O–C miigration: Baker–Venkataraman, Fries and Wittig rearrangements.
PG75T403B: Heterocyclic and Medicinal Che mistry	UNIT-IV Biochemical Mechanism: Reaction mechanism of the Biochemical reactions associated with the following : Thiamine pyrophosphate (TPP). Pyridoxal phosphate (PLP) Lipoic.acid Vitamin – B_{12} . Nicotinamide. Flavin. Tetrahydrofolic acid. Biotin. Coenzyme A. UNIT – I Heterocyclic Chemistry - I Chemistry of three, four, and seven membered heterocycles with one Heteroatom. Three membered : Oxeranes, Aziridines and Thiranes. Four membered : Oxetanes, Azetidines and Thietanes. Seven membered: Oxepines, Azepines and Thiepines.	UNIT-IV Organo-Lithium, -Magnesium, -Zinc, and -Tin Compounds: Organolithium and organomagnesium: Preparation, properties of organolithium and organomagnesium compounds and their uses in organic synthesis and in the preparation of organometallic compounds, Gilman reaction, LDA. Organozinc compounds: Preparation, structure and bonding, applications in C-C bond forming reactions <i>viz.</i> , Simmons-Smith reaction, Negishi coupling, Fukuyama coupling, Barbier reaction and zinc acetylides. UNIT-1 Heterocyclic Chemistry-I Chemistry of three, four, and seven membered heterocycles with one heteroatom. Three membered: oxiranes, aziridines and thiranes. Four membered: oxetanes, azetidines and thietanes. Seven membered: oxepines, azepines and thiepines.
	UNIT-II Heterocyclic Chemistry - II Transformations, Photochemistry and rearrangement in Heterocycles. Transformations : i) Coumarins to benzofurans. ii) Sydnones to Pyrazoles. iii) Chromones to Pyrazoles. iv) Furans to Pyridines. v) Furans to Pyridines. v) Pyrroles to Pyridines. Heterocycles in Functional group Transformations: i) Alkanes from Thiophenes. ii) Cycloalkanes from Pyrazolines. iii) Dienes from Pyrroles. iv) Alcohols from isoxazodiolines. v) Esters from Trichlorocyanuric acid.	UNIT–II Heterocyclic Chemistry–II Transformations, Photochemistry and rearrangement in heterocycles. Transformations of: (i) coumarins to benzofurans, (ii) sydnones to pyrazoles, (iii) chromones to pyrazoles (iv) furans to pyridines and (v) pyrroles to pyridines. Heterocycles in functional group fransformations: (i) alkanes from thiophenes, (ii) cycloalkanes from pyrazolines, (iii) dienes from pyrroles (iv) alcohols from isoxazodiolines (v) esters from trichlorocyanuric acid, (vi) acetylenes from 1,2,3-selenadiazoles and (vii) deoxygenation of phenols tetrazoles. Rearrangements in heterocycles: (i) Dimroth

 vi) Acetylenes from 1,2,3- selenadiazoles and vii) Deoxygenation of Phenols tetrazoles. Rearrangements in Heterocycles: i)Dimroth Rearrangement ii)Boultan-Katritzky Rearrangement. iii)Fischer Indole cyclisation. 	rearrangement, (ii) Boultan–Katritzky rearrangement and (iii) Fischer Indole cyclisation.
UNIT – III Medicinal Chemistry – I: Modern theories of drug action, concept of receptors, computer aided drug design, Qualitative and quantitative SAR. Sulfa Drugs: Sulfadiazines, Sulfamethazines, Sulfaguanidines, Sulfa isoxozoles, Sulfamerazine. Analgesics : Classification of Narcotic and Non-narcotic analgesics. Narcotic : Opium alkaloids, Morphine, Metopon, Benzomorphan and Phenazocine. Non-narcotic : 4-Phenylpiperidines – Pethidine, Diisopropylamines, Methadone, Pyrazolones, Antipyrine. Anti-Fertility Drugs: Steroidal and non- steroidal compounds; Norethindrone, Mestranil, Norgestrol and non-steroidal antifertility drugs.	UNIT-III Medicinal Chemistry-I: Modern theories of drug action, concept of receptors, computer aided drug design, qualitative and quantitative SAR. Sulfa drugs: Sulfadiazines, sulfamethazines, sulfaguanidines, sulfaisoxozoles and sulfamerazine. Analgesics: Classification of narcotic and non-narcotic analgesics. Narcotic: Opium alkaloids, morphine, metopon, benzomorphan and phenazocine. Non-Narcotic: 4-Phenylpiperidines, pethidine, di-isopropylamines, methadone, pyrazolones and antipyrine. Anti-Fertility Drugs: Steroidal and non-steroidal compounds, norethindrone, mestranil, norgestrol and non-steroidal antifertility drugs.
UNIT – IV Medicinal Chemistry – II: Antineoplastic Agents: Nitrogen Mustards, Chlorabucil, Sarcolycin Dopan and Cyclophosphomide. Pteridines: Amethopterin, Pyrimidines, 5-fluoro uracil, Cis-platines, anti- platines etc. Antibiotics: Structure, Synthesis, stereochemistry and spectral features of the following antibiotics : Natural penicillins, Semisynthetic penicillins,Patulin, Chloramphenicol, Steptomycin, Structural features and uses of common antibiotic drugs. Norfloxacin, Rifamycin and Amoxycillin.	UNIT – IV Medicinal Chemistry–II: Antineoplastic agents: Nitrogen mustards, chlorabucil, sarcolycin dopan and cyclophosphomide. Pteridines: Amethopterin, pyrimidines, 5–fluorouracil, cis–platines, anti–platines, etc. Antibiotics: Structure, synthesis, stereochemistry and spectral features of the following antibiotics: natural penicillins, semisynthetic penicillins, patulin, chloramphenicol, steptomycin, structural features and uses of common antibiotic drugs. Norfloxacin, rifamycin and amoxycillin.

PG75D404B: Project Work [*]	The project work may include inplant training in Industries/short term work in the Department/other educational institutions/R&D organizations/Data mining/Review of current literature/ Theoretical methods/computer applications. Experimental work may involve studies on synthesis/measurements/study of properties/characterization by physical methods/activities for reported/unreported research or any suitable combination there of In case of the students who would work outside the campus, the supervising staff member may visit to the work place at least once during the period and may be eligible for TA-DA as per the University rules.	The project work may include in-plant training in Industries/short term work in the department/other educational institutions/R&D organizations/data mining/review of current literature/theoretical methods/computer applications. Experimental work may involve studies on synthesis/measurements/study of properties/characterization by physical methods/activities for reported/unreported research or any suitable combination thereof.
PG75P401B: Lab Course in Organic Chemistry	Multi-step preparation of organic compounds involving various reactions like addition, elimination, oxidation, hydrolysis etc. and purification methods like distillation and crystallization.	Multi-step preparation of organic compounds involving various reactions like addition, elimination, oxidation, hydrolysis etc. and purification methods like distillation and crystallization.
PG75P402B : Lab Course in Organic Chemistry	Ternary mixture analysis (without derivatives). Qualitataive analysis of three component mixture containing amino acids, low boiling liquids, nitrophenols etc.	Ternary mixture analysis (without derivatives). Qualitataive analysis of three component mixture containing amino acids, low boiling liquids, nitrophenols etc.
PG75P403B : Lab Course in Organic Chemistry	Preparation of Derivatives / Spectral Analysis.	Preparation of Derivatives / Spectral Analysis/

THIRD SEMSTER (PHYSICAL CHEMISTRY)

PG75T301C:	UNIT-I: Quantum Mechanics-I:	UNIT-I :Quantum Mechanics:
PG751301C: Quantum Mechanics, Group Theory & Diffraction.	UNIT-I: Quantum Mechanics-I: Review of Classical Mechanics: Equation of motion for a particle, Newtonian, Lagrangian and Hamiltonian equations of motion, elementary wave motion. Postulates of quantum mechanics, operators, eigen values and expectation values. Commuting operators, linear operator and Hermitian operators. Application of Schrodinger equation: Review of the results of particle in a box of one and three dimensions, degeneracy. Reflection and penetration of a particle in a one-dimensional box of semi-infinite barrier, a particle in a box of finite walls, linear harmonic oscillator. Hermite polynomials. A rigid planar rotator,	UNIT-1 :Quantum Mechanics: Equation for hydrogen atom and its solutions, separation of variables, the phi, theta and radial equations, the problems of spherical symmetry. Approximate methods in quantum mechanics: variation method and variation theorem, linear variation functions, secular equations and secular determinants. Application of variation method to hydrogen molecule ion, hydrogen molecule and normal helium atom. Perturbation theory (first order and non-degenerate), application of perturbation theory to the helium atom.
	derivation of selection rules for transitions in rotating molecule. UNIT – II: Quantum Mechanics-II: Equation for hydrogen atom and its solutions, separation of variables, the phi, theta and radial equations, the problems of spherical symmetry. Approximate methods in quantum mechanics: Variation method and variation theorem, linear variation functions, secular equations and secular determinants. Application of variation method to hydrogen molecule ion, hydrogen molecule and normal helium atom. Perturbation theory (first order and non-degenerate), application of perturbation theory to the helium atom.	UNIT- II: Atomic Structure and Atomic Spectra: A summary of the hydrogen spectrum. Alkali spectra and alkali like spectra, spark spectra and arc spectra. Moseley lines. Helium and alkaline earth spectra. Multiplet structure of line spectra. Doublet structure of alkali spectra and compound doublets, triplets and singlets of alkaline earths and helium, prohibition of intercombinations. Multiplicities and term symbols. Space Quantization: Zeeman effect, normal and anomalous Zeeman effects, Paschen–Back effect and Stark effect.

UNIT-III: Atomic St	tructure and UNIT-III: Symmetry Properties of
Atomic Spectra:	Molecules and Group Theory:
A summary of the hydro	ogen spectrum. Introduction to symmetry, molecular
Alkali spectra and alkal	i like spectra, symmetry, symmetry elements,
spark spectra and arc sp	ectra. Moseley symmetry operations and matrix method
lines. Helium and alkaline	e earth spectra. in symmetry. Molecular point groups:
Multiplet structure of	line spectra. point groups identification of point
Doublet structure of alka	ali spectra and groups, construction of group
compound doublets, triple	ets and singlets multiplication tables, symmetry species
of alkaline earths and heli	um, prohibition and point group character tables.
of intercombinations. Mu	Iltiplicities and Reducible and irreducible
term symbols.	representations, properties of irreducible
Space quantization: Z	eeman effect, representation, Mulliken symbolism rules
normal and anomalous Z	eeman effects, for irreducible representation, structure
Paschen- Back effect, Star	· · · · · ·
	formula and the great orthogonality
	theorem. Normal mode analysis: number
	of normal modes of vibrational symmetry
UNIT-IV:	types, infrared and Raman activity, Rule
	of mutual exclusion.
Polymer Chemistry: Mechanism of polyme	migration, free
radical, cationic, anior	
opening polymerizations.	\sim
polymerization, metallo	Diffraction Studies
• •	ansfer radical X-ray diffraction: Reciprocal lattice,
polymerization, atom the polymerization (ATRP	indexing of single crystal rotation
polymerization (ATA)	nhotographs determination of molecular
polymerization, grou	parameters the structure factor
polymerization, grou	¹ calculations Fourier series and phase
1 5 5	lechanism of problems. Refinements of Fourier
transport in polymeric n	procedures and general concept of
rejection performance,	and industrial solution of structures.
applications of micro filtr	Neutron diffraction: Neutron diffraction
ultrafiltration (UF) membr	ranes Reverse and differences from X-ray diffraction.
osmosis (RO) and Electr	odialysis (ED)
Preparation of ion-exchar	orge membranes principles, structure analysis: visual
grafted on polyethylen	e film using comparison of intensities, radial
	aistribution function and its refinements.
Preparation of anic	Lhe rotating sector method
_	loromethylated
e	4,4'-bipyridine.
Preparation of styrene-di	
based ion exchange memb	•
	141105.

PG75P302C:		UNIT-I: Rotational and
Spectroscopy	UNIT I: Dotation of Molecules and	Vibrational Spectroscopy:
& Voltammetry	 UNIT – I: Rotation of Molecules and Rotational Spectra: Classification of molecules; momental ellipsoid, energy levels of linear, symmetric, spherical and asymmetric top molecules and their symmetry properties. Thermal distribution of rotational energy levels. Infrared rotational spectra, non rigid rotor treatment. Vibration of Molecules: Molecule as harmonic oscillator : vibrational eigen functions and eigen values. Hermite polynomials; calculation of transition of probabilities and selection rules. The anharmonic oscillator, energy levels, selection rules and I.R.Spectra. Mathematical form of potential energy curves. 	Rotation of polyatomic molecules: classification of molecules, momental ellipsoid, energy levels of linear, symmetric, spherical and asymmetric top molecules and their symmetry properties. Selection rules. Thermal distribution of rotational energy levels. Infrared rotational spectra and non rigid rotor treatment. Vibration of molecules : Molecule as harmonic oscillator, vibrational eigen functions and eigen values. Hermite polynomials, calculation of transition of probabilities and selection rules. The anharmonic oscillator, energy levels, selection rules and IR spectra. Anharmonicity and Morse equations. Rotation-vibration spectra of polyatomic molecules : Rotation - vibration spectra, shapes of absorption bands in case of (i) linear, (ii) symmetric top, (iii) spherical top and (iv) asymmetric top, molecules. Isotopic effects. Applications of IR spectroscopy. Numerical problems on IR spectroscopy.
	UNIT – II: Rotation-Vibration Spectra: Rotation - vibration spectra, shapes of absorption bands in case of (i) linear, (ii)symmetric top, (iii) spherical top and	UNIT-II: Nuclear Magnetic Resonance-I: Magnetic properties of nuclei: concept of nuclear spin, interaction between spin
	(iv)asymmetric top, molecules. Isotopic effects. Applications of I.R. spectroscopy	and external magnetic field, energies and energy levels of nuclear spin states, population of energy levels. Larmor
	Microwave Spectroscopy	precession, relaxation processes and
	Gaseous microwave spectra and rotational transitions: Study of inversion of ammonia and hindered rotations in molecules. Instrumentation. Stark effect in molecular spectra; first and second order Stark effects.	relaxation times, theoretical principles underlying NMR, experimental set up and instrumentation: continuous wave and pulsed Fourier transform technique in NMR. Concept of chemical shift, shielding and deshielding mechanisms, diamagnetic–anisotropy, ring currents.

	Spin-spin coupling, coupling constants
	and rules governing the interpretation of
	first order ¹ H–NMR spectra and
	elucidation of structure. Kinetic
	applications.
UNIT – III: Nuclear Magnetic	UNIT-III: Magnetic Resonance
Resonance:	Spectroscopy-II and Optical
Magnetic properties of nuclei, theoretical	Spectroscopy
principles underlying NMR and	Nuclear quadrupole resonance
experimental set up. Shielding and	spectroscopy: Theory and
deshielding mechanisms and concept of	instrumentation, effect of magnetic field
chemical shift. High resolution NMR.	on the spectra, relationship between
Spin-spin coupling, coupling constants	electric field gradients and molecular
and elucidation of structure by	-
NMRspectra. Kinetic applications.	11
	interpretation of eQq data, effect of
	crystal lattices on the magnitude of eQq.
	Structural information from NQR
	spectra.
	Electron spin resonance
	spectroscopy:Introduction and
	theoretical principles. Intensity,
	frequency, position and representation of
	ESR absorptions. Hyperfine structure of
	ESR absorptions. Zero field splitting and
	Kramer's degeneracy. Instrumentation.
	Applications to the study of free radicals
	and compounds with unpaired electrons:
	ESR spectra of hydrogen and nitrogen
	atoms, semi-quinone ion, naphthalene
	negative ion, methyl radical and methyl
	substituted radicals. Measurements of
	distribution of unpaired electron density
	in radicals. Study of coordination
	compounds by ESR technique. Optical
	rotatory dispersion and circular
	dichroism: Simple theoretical account
	and instrumentation. Treatment of data,
	applications to gross structure
	determination, octant rule, determination
	5
	configuration.
UNIT – IV: Nuclear Quadrupole	UNIT-IV: Voltammetry:

	Resonance Spectroscopy:	Voltammetry: Principles, and
	Theory and instrumentation. Effect of	
	magnetic field on the spectra, relationship	techniques:
	between electric field gradients, q and	Linear sweep voltammetry, staircase and
	molecular structure. Applications. The	square wave voltammetry, anodic
	interpretation of eQ_q . data effect of	stripping voltammetry, cathodic stripping
	crystal lattice on the magnitude of eQ_q	voltammetry, cyclic voltammetry, normal
	Structural information from NQR spectra.	and differential pulse voltammetry and
	Electron Spin Resonance	their theoretical aspects, electrodes, cells
	Spectroscopy:	and their set-up. Electron transfer (ET) or
	Theoretical principles and	charge transfer process: reversible ET,
	instrumentation. ESR spectra of hydrogen	irreversible ET, quasi reversible ET and
	and nitrogen atoms, Semi-quinone ion,	their diagnostic tests. Applications of
	naphthalene negative ion, methyl radical	voltametric techniques.
	and methyl substituted radicals Zero field	Polarography: Principles, dropping
	splitting, Kramer's degeneracy.	mercury electrode (DME),
	Measurements of distribution of unpaired	instrumentation, linear scan
	electrons in radicals. Study of co-	polarography, polarography currents,
	ordination compounds by ESR technique.	polarograms. Diffusion current at
	ordination compounds by ESK technique.	dropping electrodes, residual currents,
		advantages and disadvantages of
	Ortical Detatant Dimension and	dropping mercury electrode, current- sampled polarography, half wave
	Optical Rotatory Dispersion and	potentials. Pulse polarography.
	Circular Dichroism:	Applications.
	Simple theoretical account and instrumentation. Treatment of data,	
	applications to gross structure	
	determination, octant rule, determination	
	of stereochemistry and absolute	
	configuration	
PG75T303C:		
Statistical	UNIT – I: Diffraction Studies:	UNIT Is Statistical Mask
Mechanics and	X-Ray Diffraction: Reciprocal lattice,	UNIT-I: Statistical Mechanics and
Polymer	-	Statistical Thermodynamics–I:
Chemistry	indexing of single crystal rotation	Mieroscopie and macroscopie systems
	photographs, determination of molecular parameters, the structure factor	Microscopic and macroscopic systems. Microstates and macrostates. Assemblies
	1 ,	of independent localised and non-
	calculations, Fourier series and the phase problems. Refinements of Fourier	localised systems. Phase space or γ -space
	1	and µ-space. Ensembles. Classical
	procedures.	statistics: Maxwell-Boltzmann
	Neutron diffraction: Neutron diffraction	distribution for ideal gases and mixture
	and differences from X-Ray diffraction.	of gases. Determination of Lagrangian
	Electron diffraction: Theoretical	multipliers, alpha and beta. Heat
	principles, structure analysis: Visual	capacities of solids: Einstein's theory of heat capacity of solids, Debye's theory,
	comparison of intensities, radial	characteristic temperature and use of
	distribution function and its refinements.	successive competitute and use of

The rotating sector method.	Debye equation for the determination of heat capacity at low temperature. Entropies and heat capacities of ortho–, para–hydrogen systems, comparison of third law entropies with statistical entropies.
	UNIT-II: Statistical Mechanics and
UNIT – II: Symmetry Properties of	Statistical Thermodynamics-II:
Molecules and Group Theory:	Quantum statistics: Bose–Einstein,
Symmetry elements, Symmetry operations	Fermi–Dirac and comparison with
and point group. Determination of point	Maxwell–Boltzmann statistics.
group. Construction of group	Numerical problems.
multiplication tables. Symmetry species	
and character tables. Reducible and irreducible representations. Analysis of	Partition functions: Definition of
reducible representations. Number of	partition function and separation of
normal modes of vibrational symmetry	partition functions. Translational,
types. Rule of mutual exclusion. I.R.and	Sackur–Tetrode equation, rotational,
Raman active fundamentals.	vibrational and electronic partition
	functions for monoatomic, diatomic and
	polyatomic gaseous
	molecules.Equipartition of energies.
UNIT – III: Statistical Mechanics and	UNIT–III: Polymer Chemistry and
Statistical Thermodynamics-I:	Fuel cells:
Microscopic and Macroscopic	Dendrimers and hyper-branched
systems.Microstates and macrostates.	polymers:introduction to dendrimers,
Assemblies of independent localised and	methods of preparation, common
Assemblies of independent localised and non-localised systems. Phase space or γ -	
_	methods of preparation, common
non-localised systems. Phase space or $\gamma\text{-}$	methods of preparation, common properties and applications. Synthesis of
non-localised systems. Phase space or γ -space and μ -space. Ensembles.	methods of preparation, common properties and applications. Synthesis of polyamidoamines using divergent route and dendritic polyether macromolecules
non-localised systems. Phase space or γ -space and μ -space. Ensembles. Classical Statistics: Maxwell-Boltzmann	methods of preparation, common properties and applications. Synthesis of polyamidoamines using divergent route
non-localised systems. Phase space or γ - space and μ -space. Ensembles. Classical Statistics: Maxwell-Boltzmann distribution for ideal gases and mixture of gases. Determination of Lagrangian multipliers, alpha and beta. Equipartition	methods of preparation, common properties and applications. Synthesis of polyamidoamines using divergent route and dendritic polyether macromolecules using convergent route. Hyper-branched
non-localised systems. Phase space or γ - space and μ -space. Ensembles. Classical Statistics: Maxwell-Boltzmann distribution for ideal gases and mixture of gases. Determination of Lagrangian multipliers, alpha and beta. Equipartition of energies.	methods of preparation, common properties and applications. Synthesis of polyamidoamines using divergent route and dendritic polyether macromolecules using convergent route. Hyper–branched polymers, preparation of aromatic
non-localised systems. Phase space or γ - space and μ -space. Ensembles. Classical Statistics: Maxwell-Boltzmann distribution for ideal gases and mixture of gases. Determination of Lagrangian multipliers, alpha and beta. Equipartition of energies. Heat Capacities of Solids	methods of preparation, common properties and applications. Synthesis of polyamidoamines using divergent route and dendritic polyether macromolecules using convergent route. Hyper–branched polymers, preparation of aromatic polyesters by the self-condensation of 3,
non-localised systems. Phase space or γ - space and μ -space. Ensembles. Classical Statistics: Maxwell-Boltzmann distribution for ideal gases and mixture of gases. Determination of Lagrangian multipliers, alpha and beta. Equipartition of energies. Heat Capacities of Solids Einstein's theory of heat capacity of	methods of preparation, common properties and applications. Synthesis of polyamidoamines using divergent route and dendritic polyether macromolecules using convergent route. Hyper–branched polymers, preparation of aromatic polyesters by the self-condensation of 3, 5–bis (acetoxy)benzoic acid.
non-localised systems. Phase space or γ - space and μ -space. Ensembles. Classical Statistics: Maxwell-Boltzmann distribution for ideal gases and mixture of gases. Determination of Lagrangian multipliers, alpha and beta. Equipartition of energies. Heat Capacities of Solids Einstein's theory of heat capacity of solids, Debye's theory. Characteristic	methods of preparation, common properties and applications. Synthesis of polyamidoamines using divergent route and dendritic polyether macromolecules using convergent route. Hyper–branched polymers, preparation of aromatic polyesters by the self-condensation of 3, 5–bis (acetoxy)benzoic acid. Polymeric nonlinear optical: Materials,
non-localised systems. Phase space or γ - space and μ -space. Ensembles. Classical Statistics: Maxwell-Boltzmann distribution for ideal gases and mixture of gases. Determination of Lagrangian multipliers, alpha and beta. Equipartition of energies. Heat Capacities of Solids Einstein's theory of heat capacity of	methods of preparation, common properties and applications. Synthesis of polyamidoamines using divergent route and dendritic polyether macromolecules using convergent route. Hyper–branched polymers, preparation of aromatic polyesters by the self-condensation of 3, 5–bis (acetoxy)benzoic acid. Polymeric nonlinear optical: Materials, definition, classification of NLO
non-localised systems. Phase space or γ - space and μ -space. Ensembles. Classical Statistics: Maxwell-Boltzmann distribution for ideal gases and mixture of gases. Determination of Lagrangian multipliers, alpha and beta. Equipartition of energies. Heat Capacities of Solids Einstein's theory of heat capacity of solids, Debye's theory. Characteristic	methods of preparation, common properties and applications. Synthesis of polyamidoamines using divergent route and dendritic polyether macromolecules using convergent route. Hyper–branched polymers, preparation of aromatic polyesters by the self-condensation of 3, 5–bis (acetoxy)benzoic acid. Polymeric nonlinear optical: Materials, definition, classification of NLO materials, basic molecular characteristics of second–order NLO materials, types of
non-localised systems. Phase space or γ - space and μ -space. Ensembles. Classical Statistics: Maxwell-Boltzmann distribution for ideal gases and mixture of gases. Determination of Lagrangian multipliers, alpha and beta. Equipartition of energies. Heat Capacities of Solids Einstein's theory of heat capacity of solids, Debye's theory. Characteristic temperature and use of Debye equation	methods of preparation, common properties and applications. Synthesis of polyamidoamines using divergent route and dendritic polyether macromolecules using convergent route. Hyper–branched polymers, preparation of aromatic polyesters by the self-condensation of 3, 5–bis (acetoxy)benzoic acid. Polymeric nonlinear optical: Materials, definition, classification of NLO materials, basic molecular characteristics of second–order NLO materials, types of second–order NLO materials with
non-localised systems. Phase space or γ - space and μ -space. Ensembles. Classical Statistics: Maxwell-Boltzmann distribution for ideal gases and mixture of gases. Determination of Lagrangian multipliers, alpha and beta. Equipartition of energies. Heat Capacities of Solids Einstein's theory of heat capacity of solids, Debye's theory. Characteristic temperature and use of Debye equation for the determination of heat capacity at	methods of preparation, common properties and applications. Synthesis of polyamidoamines using divergent route and dendritic polyether macromolecules using convergent route. Hyper–branched polymers, preparation of aromatic polyesters by the self-condensation of 3, 5–bis (acetoxy)benzoic acid. Polymeric nonlinear optical: Materials, definition, classification of NLO materials, basic molecular characteristics of second–order NLO materials, types of second–order NLO materials with examples, schematic representation of
non-localised systems. Phase space or γ - space and μ -space. Ensembles. Classical Statistics: Maxwell-Boltzmann distribution for ideal gases and mixture of gases. Determination of Lagrangian multipliers, alpha and beta. Equipartition of energies. Heat Capacities of Solids Einstein's theory of heat capacity of solids, Debye's theory. Characteristic temperature and use of Debye equation for the determination of heat capacity at low temperature	methods of preparation, common properties and applications. Synthesis of polyamidoamines using divergent route and dendritic polyether macromolecules using convergent route. Hyper–branched polymers, preparation of aromatic polyesters by the self-condensation of 3, 5–bis (acetoxy)benzoic acid. Polymeric nonlinear optical: Materials, definition, classification of NLO materials, basic molecular characteristics of second–order NLO materials, types of second–order NLO materials with examples, schematic representation of experimental setup for the measurement
non-localised systems. Phase space or γ - space and μ -space. Ensembles. Classical Statistics: Maxwell-Boltzmann distribution for ideal gases and mixture of gases. Determination of Lagrangian multipliers, alpha and beta. Equipartition of energies. Heat Capacities of Solids Einstein's theory of heat capacity of solids, Debye's theory. Characteristic temperature and use of Debye equation for the determination of heat capacity at low temperature Sackur - Tetrode equation: Entropies and	methods of preparation, common properties and applications. Synthesis of polyamidoamines using divergent route and dendritic polyether macromolecules using convergent route. Hyper–branched polymers, preparation of aromatic polyesters by the self-condensation of 3, 5–bis (acetoxy)benzoic acid. Polymeric nonlinear optical: Materials, definition, classification of NLO materials, basic molecular characteristics of second–order NLO materials, types of second–order NLO materials with examples, schematic representation of experimental setup for the measurement of second harmonic generation (SHG).
non-localised systems. Phase space or γ - space and μ -space. Ensembles. Classical Statistics: Maxwell-Boltzmann distribution for ideal gases and mixture of gases. Determination of Lagrangian multipliers, alpha and beta. Equipartition of energies. Heat Capacities of Solids Einstein's theory of heat capacity of solids, Debye's theory. Characteristic temperature and use of Debye equation for the determination of heat capacity at low temperature Sackur - Tetrode equation: Entropies and heat capacities of ortho-, para-hydrogen	methods of preparation, common properties and applications. Synthesis of polyamidoamines using divergent route and dendritic polyether macromolecules using convergent route. Hyper–branched polymers, preparation of aromatic polyesters by the self-condensation of 3, 5–bis (acetoxy)benzoic acid. Polymeric nonlinear optical: Materials, definition, classification of NLO materials, basic molecular characteristics of second–order NLO materials, types of second–order NLO materials with examples, schematic representation of experimental setup for the measurement

	Semiconducting polymers: basic criteria
	for semiconducting properties,
	electrochemical polymerization,
	precursor route to poly
	(p-phenylenevinylene) (PPV) and
	synthesis of poly (3-alythiophene).
	Fuel cells: Introduction, difference
	between conventional cell and a fuel cell,
	limitations, advantages, types of fuel
	cells. Construction and working of
	hydrogen–oxygen and methanol–oxygen
	fuel cells. Applications of fuel cells.
UNIT We Delaymon Chamistana	
UNIT – IV: Polymer Chemistry:	UNIT–IV: Polymer Membrane
Transitions in polymers: Definition of class transition temperature (T) and flaw	Chemistry:
glass transition temperature (T_g) and flow	Polymer membranes in separation
temperature (T_f) and melting temperature (T_f) thermal behaviour of energy bases	science: mechanism of transport in
(T _m), thermal behaviour of amorphous	polymeric membranes and rejection
and crystalline polymers, factors	performance, and industrial applications
affecting the T_g . Plasticizers, properties	of micro filtration (MF) and
and their effect on T_{g} of PVC and	ultrafiltration (UF) membranes. Reverse
diethylhexylsuccinate, efficiency of	osmosis (RO): principles of RO process
plasticizers, comparison of T_g and $T_m T_g$	and determination of its efficiency in
of copolymers and polymer blends,	terms of flow of water and salt. Preparation of polyamide and cellulose
relation between T_g and T_m .	based RO membranes.
Preparation, properties and commercial	Electrodialysis:principle of ED, working
importance: Vinyl polymers:	model of ED. Preparation of ion-
polyethylene,	exchange membranes grafted on
polypropylene, polystyrene,	polyethylene film using styrene and
polymethylmethacrylate, polyvinyl	chloromethylstyrene. Preparation of
chloride, polytetrafluoroethylene.	styrene-divinyl benzene based ion
Polyesters: poly(ethylene terephthalate).	exchange membranes. Preparation of anion exchange membranes using
Polyamides: aramides (Kevlar and	chloromethylated polysulfone and 4,
Nomex). Polyimides. Polysulphone.	4'-bipyridine. Preparation of sulfonated
Polyurethanes. Polyureas. Natural	poly(phosphazene) membrane.
polymers: polyisoprenes, chitosan.	Preparation of ion exchange membrane
Methods of polymer fabrications:	using 4-vinyl pyridine and
Fabrication of polymer films: solution	epichlorohydrin. Applications of
casting, melt pressing, melt extrusion and	Electrodialysis. Vinyl polymers
bubble blown. Fabrication of shaped	(preparation, properties and commercial
polymer objects: compression moulding,	importance): polyethylene, polypropylene, polystyrene,
injection moulding, reaction injection	polymethylmethacrylate, polyvinyl
moulding, blow moulding extrusion	

	moulding and calendaring. Spinning industrial polymers: solution spinning and melt spinning.	chloride, polytetrafluoroethylene. Polyesters: poly(ethylene terephthalate). Polyamides: aramides (Kevlar and Nomex), polyimides, polysulphone, polyurethanes, polyureas. Natural polymers: polyisoprenes, chitosan.
PG75P301C: Lab Course In Physical Chemistry	 Viscosity : Molecular weight of a high polymer by viscosity determination. Solubility: Heat of solution (e.g. Oxalic acid, benzoic acid etc.) by solubility experiments. Phase Equilibria: a) Distribution of benzoic acid (or succinic acid) between benzene and water. b) Molecular weight of benzene (or nitrobenzene) by steam distillation. c) Vapour pressure of chlorobenzene by steam distillation. Refractometry: Electron polarization and electron polarizability of a liquid. 	 Viscosity: Determination of number average molecular weight by hydroxyl end group analysis. Conductance: Verification of the Debye-Huckel- Onsagar equation for strong electrolytes. Reaction Kinetics: Studying the acid catalysed kinetics of oxidation of glycene by chloramine-T (CAT) and hence determination of order of reaction w.r.t. CAT and glycene and hence overall order of the reaction. Potentiometry: Potentiometric estimation of a mixture of a halides, (KCl, KBr and KI) by titrating against AgNO₃
	 5. Polarimetry: Percentage composition of two optically active substances (e.g,d- sucrose and d- tartaric acid) 6. Absorptiometry: a) Applicability range (for an absorbing substance in solution and evaluation of absorbency index, measuring unknown concentration. b) Mixture analysis by absorptiometry. c) Application of Hammett Acidity function. 7. Electrolytic Conductance: a) Verification of the Onsager equation as applied to electrolytes. b) Comparison of strengths of weak acids (e.g. Chloroacetic acid and acetic acid). 8. Reaction Kinetics: Hydrolysis of methyl acetate:i) catalytic coefficients (or strengths of acids) ii) Arrhenius parameters. 	 Cryoscopy:Determination of the molecular weight of the given solute by the vacuum flask method. pH metry:Determine the acid and base dissociation constant of an amino acid and hence find its isoelectric point Refractometry:Analysis of a binary mixture (glycerol and water) by refractive indices measurement. Spectrophotometry:Individual and simultaneous estimation of Fe(III) and Cu(II) spectrophotometrically by titrating against EDTA. X-Ray diffraction: To determine the lattice constant and Bravais lattice using X-ray diffraction pattern.
PG75P302C Lab Course In Physical Chemistry	 a) Standard electrode potential of reversible metalmetal ions at room temperature. b) Solubility of sparingly soluble salts c) Dissociation constants of a weak monobasic acid 10. Cryoscopy: Determination of cryoscopic constant of the given solvent. 1. Surface Tension: a) Variation of surface tension of aqueous solutions of a liquid (n-propyl alcohol) with concentration and determination of limiting cross sectional area of the alcohol molecule. b) Interfacial tension between two 	Zeeman effect: Study the Zeeman effect and determine e/m ratio of electron. 1. Surface Tension : Variation of surface tension of aqueous solutions of a liquid (n–propyl alcohol) with concentration and determination of limiting cross sectional area of the alcohol molecule.

гг			1
	immiscible liquids (e.g., benzene		
	& water at room temperature)		
	c) Effect of added salt on the surface		
	tension of water		
	d) Critical micelle concentration of a		
	soap molecule. (e.g., Potassium	2.	Adsorption: Investigation of
	laureate).		adsorption of oxalic acid from
			aqueous solution by activated
	2. Thermochemistry:		charcoal and examine the validity of
	Heat of neutralization of weak and		Freundlich and Langmuir's
			adsorption isotherm.
	strong acid.		adsorption isotherm.
	3. Electrolytic Conductance:	3.	Conductance: Moderately weak
	Conductometric titrations :		acid like salicylic acid vs NaOH
			(Salt line method and alkali method).
	a) Weak acid Vs weak base,		(Suit line method and arkan method).
	b) H_2SO_4 Vs BaC1 ₂		
	c) Moderately weak acid like		
	salicylic acid Vs NaOH (Salt line		
	method and alkali method),		
	d) Dilute solution of a weak acid		
	(0.01 to 0.001N) Vs NaOH by		
	addition of solvent of low		
	dielectric constant, using		
	ammonia and NaOH titrants and	4.	Reaction Kinetics: Determination of
	by double alkali method		degree of hydrolysis of urea
			hydrochloride by studying kinetics
	4. Reaction Kinetics:		of hydrolysis of methyl acetate using
	Hydrolysis of methyl acetate : Degree		HCl and equinormal urea
	of hydrolysis of urea hydrochloride		hydrochloride solutions.
	using HCl and equinormal urea		
		5.	Potentiometry: (i) Acid and base
	hydrochloride solutions.	5.	dissociation constants of an amino
			acid and its isoelectric point and (ii)
	5. Emf of Cells:		Mean ionic activity coefficient of
	a) Acid and base dissociation		-
	constants of an amino acid and its		hydrochloric acid at different
	iso-electric point.		concentrations using a concentration
	b) Titration of Fe^{2+} with Ce^{4+} and		cell without transference: influence
	determination of the formal redox		of ionic strength on the mean ionic
	potential of Fe^{3+}/Fe^{2+} and		activity coefficient.
	Ce^{4+}/Ce^{3+} .		
	c) Mean ionic activity coefficient of		
	hydrochloric acid at different		
	concentrations using a	6.	Refractometry : Variation of
		1	refractive index with composition

	 concentration cell without transference: influence of ionic strength on the mean ionic activity coefficient. 6. Refractometry: Variation of refractive index with composition of mixture (e.g., CCl₄ and CH₃COOC₂H₅) 	7.	of mixture (e.g., CCl_4 and $CH_3COOC_2H_5$). Transport Number : Transference number of Ag^+ and Cl^- ions by making boundary method.
	7. Cryoscopy: Determination of degree of dissociation of given electrolytes (KCl, urea)	8.	Viscosity: Determination of molecular weight of polyhexamethylenesebacamide (nylon 6, 10) by amine end group analysis.
	 8. Transport Number: Transference number of Ag⁺ and Cl⁻ ions by making boundary method. 9. pH meter: a) Determination of strength of unknown solution of acids (strong, weak, etc) b) Determination of pH of buffer solutions 10. Viscosity: Effect of temperature on the viscosity of the liquid 	9.	Optics: To determine the wavelength of He–Ne laser by measuring the fringe width from interference pattern.
PG75P303C: Lab Course In Physical Chemistry	 of the liquid 1.Viscosity : Viscosity of air by Rankine's method 2. Solubility: Effect of addition of an electrolyte on the solubility of an organic acid. 3. Phase Equilibria: Equilibrium constant of the reaction: KI+I₂ KI₃ and the determination of an unknown concentration of KI solution. 4. Thermochemistry: a) Heat of hydration of CuSO₄(heat of crystallization of CuSO₄ 5H₂O) b) Integral heat of solution and dilution of salts (e.g.KNO₃,NaCI etc.) 5. Absorptiometry: a) Absorptiometry titration of hydrochloric 	1. 2. 3.	 Solubility:Study the effect of addition of an electrolyte (NaCl, KCl, Na₂SO₄ and K₂SO₄) on the solubility of an organic acid (Benzoic acid or salicylic acid). Phase equilibria: Construction of phase diagram of three component system (water, benzene and ethanol or acetic acid, water and chloroform or benzene). Conductance: Studying the kinetics of saponification of ethyl acetate by conductance method and hence determine the rate constant.

 acid b) Absorptiometry estimation of Fe (III) with EDTA. 6. Electrolytic Conductance: Equivalent conductance of a weak acid, e.g. 	4.	Thermochemistry:Determination of step wise heat of neutralization of a polybasic acid.
acetic acid at different concentrations and testing the applicability of Ostwald's dilution law.	5.	Reaction Kinetics : Reaction kinetics of H_2O_2 and HI: Clock reaction.
 7. Mobilities of ions: Transference numbers of silver and nitrate ions in a solution of silver nitrate by Hittorf 's method. 8. Reaction Kinetics 	6.	Potentiometry: Potentiometric determination of stability constant of Cu ²⁺ –EDTA complex.
 a) Reaction kinetics of H₂O₂ and HI: Clock reaction b) Salt effect on the persulphate oxidation of iodide ion. 	7.	Cryoscopy: Determination of degree of dissociation of given electrolytes (KCl, urea) using cryoscopy method.
 c) Auto catalysis : Mn(VII) oxidation of oxalic acid in the presence of H₂SO₄ d) Kinetics of decomposition of the complex formed between sodium sulphide and sodiumnitroprusside 	<mark>8.</mark>	Refractometry: Molar refraction of a solid substance by dissolving it in a solvent.
 9.Emf of cells a) Stability constants of Cu ²⁺ - EDTA complex. 	<mark>9.</mark>	Solid state:Determine the curie temperature of ferromagnetic material.
 b) Ionic product of water at 25°C c) Titration of H₃PO₄ with NaOH d) Titration of Zn(II) with K₄Fe(CN)₆ and verification the formula of the complex formed between Zn(II) and[Fe(CN)₆]⁴⁻. 	<mark>10</mark>	X-ray diffraction : Determine the linear position and inter planar spacing using X-Ray diffraction patterns.
10. Cryoscopy: Determination of activities of an electrolyte and a nonelectrolyte by cryoscopic method.		

FOURTH SEMESTER (PHYSICAL CHEMISTRY SPECILIZATION)

PG75T401C	UNIT-I: Chemical Bonding:	UNIT–I: Chemical Bonding–I:
: Quantum Mechanics and Solid- State Chemistry	Molecular orbital and valence bond theories of chemical bonding, comparison of the two applications to hydrogen molecule ion, H2 molecule, Improvements in the Hitler-London wave functions, Slater orbitals and SCF method for many electron atoms,	Electronic structure of diatomic molecules. The Born– Oppenheimer approximation. Valence bond and molecular orbital theories of chemical bonding, comparison of the two theories. Applications of valence bond and molecular orbital theories to hydrogen molecule and hydrogen molecule ion.

Bonding and antibonding molecular orbitals. Molecular orbital theory applied to homonuclear and heteronuclear diatomic molecules.	Improvements in the Hitler–London wave functions. Bonding and antibonding molecular orbitals. Molecular orbital theory applied to homonuclear and heteronuclear diatomic molecules, molecular electron configuration and calculation of bond order. Slater orbitals, Hartree–Fock self-consistent field method for many electron atoms. Configuration interaction and Roothaam equations.
UNIT-II: Polyatomic molecules: Localized and non-localized molecular orbitals, hybridization and direct valence. Conjugated and aromatic molecules. Simple Huckel molecular orbital theory and M.O. description of normal and cyclic butadienes, ethylene and aromatic molecules (benzene as an example), Calculation of delocalization energies, fractional bond orders, charge density calculations. extended Huckel theory.	UNIT–II: Chemical Bonding–II: Loclized and non-localized molecular orbitals, hybridization and direct valence. Quantum mechanical treatment to sp–, sp ² – and sp ³ –hybridization and the geometry associated with sp–, sp ² – and sp ³ –orbitals. Conjugated and aromatic molecules: Huckel molecular orbital theory and MO description of normal and cyclic butadienes, ethylene and aromatic molecules (benzene as an example), calculation of delocalization energies, fractional bond orders, charge density calculations and extended Huckel theory
UNIT-III: Solid State Chemistry – I: Different types of solids: Ionic, covalent, metallic, molecular and hydrogen bonded crystals. Lattice energy of ionic crystals. Properties of solids (only elementary account mechanical, thermal, magnetic electrical and optical) Defects in Solids: Frenkel and Schottky defects and chemical reactivity of solids.	UNIT-III: Solid State Chemistry-I Introduction, properties of Solids: Malleability, ductility, elasticity, plasticity, brittleness hardness, enantiotropy, monotropy and isomorphism. Allotropy and polymorphism of solids. Bonding in solids: Ionic, covalent, metallic, molecular and hydrogen bonded crystals. Lattice energy of ionic crystals. Numerical problems. Imperfection in solids: Types of defects including Frenkel and Schottky defects, thermodynamics of Frenkel and Schottky defects. Reactivity in solid state: Introduction, thermodynamics, classification, experimental methods for the study, kinetic equation, energy of activation of solid state reactions, diffusion mechanism in solid state reactions, factors affecting the reactivity of solids
UNIT-IV: Solid State Chemistry – II: Semiconductors: Bonding and conductivity, mechanism of conductivity, energy bands in semiconductors, impurity conductors and p-n and n-p-n junctions. Importance of semiconductors. Super conductors: Occurrence of super conductivity, its destruction by	UNIT-IV: Solid State Chemistry-II: Semiconductors: Bonding and conductivity, mechanism of conductivity, energy bands in semiconductors, impurity conductors, p-n and n-p-n junctions and importance of semiconductors. Superconductors: Occurrence of super conductivity, its destruction by magnetic fields, effect of I.R. and isotope effect, B.C.S. theory of superconductivity applications.

m	nagnetic fields, effect of I.R. and	
ise	sotope effect, B.C.S. theory of	
su	superconductivity applications.	

	UNIT-I: Statistical Mechanics and Statistical Thermodynamics-II: Quantum statistics:Bose-Einstein, Fermi-Dirac and Maxwell-Boltzmann statistics and comparison between them.Partition functions: Definition of partition function and separation of partition functions. Translational, rotational, vibrational and electronic partition functions for monoatomic, diatomic and polyatomic gaseous molecules.	UNIT–I: Homogeneous Catalysis: Homogeneous Catalysis: Introduction, general catalytic mechanism: equilibrium treatment and steady-state treatment, activation energies for catalysed reactions. Acid-Base catalysis: General acid–base catalysis, mechanism of acid-base catalysis, catalytic activity and acid-base strength, salt effects in acid-base catalysis and specific acid-base catalysis: Bronsted relation and linear free energy changes. Acidity functions: Zucker–Hammett hypothesis and Bunnett hypothesis. Enzyme Catalysis: Influence of substrate concentration, pH, temperature and inhibitors, transient-phase kinetics. Mechanism of enzyme catalysis: Michaelis–Menten mechanism and
PG75T402C : Catalysis and Polymer Chemistry	 UNIT-II: Reaction Dynamics: Potential energy surfaces, methods employed in the construct of potential surfaces, calculating reactions. Effect of solvent, pressure and ionic strength for ion-ion, ion-neutral molecule type reactions, cage effects. Fast reactions: flow methods, stopped flow technique, relaxation methods and flash photolysis. UNIT-III: Catalysis and Adsorption: General acid-base catalysis and specific acid-base catalysis: Bronsted relation and linear free energy changes, Zucker- 	Lineweaver–Burk plot. UNIT–II: Adsorption and Heterogeneous Catalysis: Adsorption: The phenomenon of adsorption and thermodynamics of adsorption, adsorption isotherms, Langmuir adsorption isotherm, Langmuir constant and Gibbs energy of adsorption, Langmuir adsorption with lateral interaction, BET adsorption isotherm, Freundlich isotherm and adsorption on heterogeneous surface. Heterogeneous catalysis: Catalysis at surfaces, mechanism of heterogeneous catalysis: Langmuir–Hinshelwood mechanism and Eley–Rideal mechanism. Transition–state theory of heterogeneous surface reaction: Rates of chemisorptions, rates of desorption, unimolecular and bimolecular surface reactions. Industrial applications of heterogeneous catalysis. Comparison of homogenous and heterogeneous reaction rates. UNIT–III: Polymer Rheology and Molecular Weight Determination: Rheological Properties: Introduction, Hook's law, Newton's equation and stress-strain behaviour in
	Hammett hypothesis and Bunnett hypothesis. Enzyme Catalysis:	polymers. Measurements of average molecular weights: Osmometry, viscometry, light scattering, and gel permeation chromatography. Practical significance of

Mechanism of single substrate reactions, Michaelis-Menten mechanism, influence of pH, temperature and inhibitors. Electrochemistry: Electrical double layer: Lippman equation, theories of electrical double layer-Helmholtz- Perrin, Gouy-Chapman and Stern theories. Effect of ions on zeta potential. Activity of ions in solution: ion-solvent interactions, ion-ion interactions and free energy of ions in solution. Born model and modifications, solvation number and their determination. triple ion formation and conductance minima.	polymer molecular weight and related numerical problems
UNIT-IV: Polymer Chemistry: Kinetics of polymerization: Kinetics of free-radical addition polymerization, cationic polymerization, anionic polymerization, copolymerization and determination of reactivity ratios. Dendrimers and hyper-branched polymers:Introduction to dendrimers, methods of preparation, common properties and applications. Synthesis of polyamidoamines using divergent route and dendritic polyether macromolecules using convergent route. Hyper-branched polymers, preparation of aromatic polyesters by the self-condensation of 3,5-bis (acetoxy)benzoic acid. Polymeric nonlinear optical (NLO) materials: Definition, classification of NLO materials, basic molecular characteristics of second-order NLO materials, types of second-order NLO materials with examples, schematic representation of experimental setup for the measurement of second harmonic generation (SHG).	UNIT-IV: Thermal and Polymer Fabrication Techniques: Thermal method of analysis: Introduction, thermal characterization techniques: Thermogravimetric analysis (TGA) and differential thermal analysis (DTA), introduction, experimental procedure, advantages and disadvantages of TGA/DTA. Differential scanning calorimetry (DSC): Introduction, experimental setup, heat capacity, glass transition temperature, crystallization, melting and determination of percent crystallinity. Methods of Polymer Fabrications: Fabrication of polymer films, solution casting, melt pressing, melt extrusion and bubble blown. Fabrication of shaped polymer objects: compression moulding, injection moulding, reaction injection moulding, blow moulding, extrusion moulding and calendaring. Spinning industrial polymers: Solution spinning and melt spinning.

	UNIT-I: Raman Spectroscopy : Theories of Raman effect, Concept of polarizability and polarizibility ellipsoid. Vibrational Raman Spetcra, Rotational Raman Spectra of Molecules. Symmetry selection rule and prohibition of inter combination. Influence of nuclear spin in case of homonuclear diatomic molecules. Rotational -Vibrational Raman Spectra, principle of mutual exclusion, polarization of Raman lines and ortho- and para- modifications. An introduction to laser resonance Raman spectroscopy. Elucidation of structure of molecules, e.g.H ₂ O, N ₂ O, CO ₂ by Raman Spectra.	UNIT–I: Raman Spectroscopy: Introduction to scattering phenomenon, Raman effect: Theories of Raman effect (Classical and quantum theory). Concept of polarizability and polarizability ellipsoid. Rotational–Raman Spectra and vibrational–Raman spectra of Molecules. Symmetry selection rule and prohibition of inter–combination, influence of nuclear spin in case of homonuclear diatomic molecules, ortho– and para–modifications. Rotational–vibrational–Raman spectra, rule of mutual exclusion. Polarization of Raman lines and depolarization ratio. An introduction to Laser resonance Raman spectroscopy. Structure elucidation using combined Raman and infrared spectroscopy (e.g.H ₂ O, N ₂ O and CO ₂). Numerical problems.
PG75T403C: Spectroscopy and Microscopy	 UNIT-II: Photoelectron Spectroscopy: Valence and binding energies, shift in energies due to chemical effects and Auger transitions. Instrumentation. Applications to free molecules and surfaces. Mossbauer Spectroscopy: Principles, instrumentation, resonance line shifts, chemical shifts, quadrupole interactions and magnetic interactions. Applications of Mossbauer Spectroscopy 	UNIT-II: Mass Spectrometry: Mass Spectrometry: Introduction, theoretical principles and instrumentation: ionization and ionization methods (electron ionization, chemical ionization, desorption ionization and electron spray ionization techniques). Mass analyser (magnetic deflection and time of flight mass analyser).Metastable ions. Ionization and appearance potentials, experimental determination of ionization and appearance potential and applications in mass spectrometry.Fragmentation: Principles, Stevenson rule, odd electron (OE ⁺)and even electron (EE ⁺) ions, molecular ion and base peak, fragmentation pattern and correlation with structure. Isotope effects in chloro and bromo compounds. McLafferty rearrangement. Nitrogen Rule. Application of mass spectrometry in structure diagnosis and determination of empirical molecular formula from the peak intensities of molecular ion and isotopic peaks. Numerical problems
	UNIT-III: Mass Spectrometry: Instrumentation and theoretical principles, determination of empirical formula, fragmentation patterns and correlation with structure. Appearance potentials and ionization potential. Polarography and Cyclic Voltammetry: Principles, instrumentation and	UNIT-III: Photoelectron and Mossbauer Spectroscopy: Photoelectron Spectroscopy: Introduction, photoelectric effect, instrumentation. Valence and binding energies, molecular term symbols, shift in energies due to chemical effects. Augar electron spectroscopy (AES), its advantages and limitations. Electron spectroscopy for

applications	chemical analysis (ESCA). Applications to free
	molecules and surfaces.
	Mössbauer Spectroscopy: Theoretical
	principles, Mössbauer effect, conditions for
	Mössbauer spectroscopy and instrumentation.
	Resonance line shifts, chemical shifts, electric
	quadrupole interactions and magnetic
	interactions. Applications of Mossbauer Spectroscopy
UNIT-IV: Characterization	UNIT-IV: Microscopy:Introduction to
Techniques:	Microscopy.
Differential Scanning Calorimetry (DSC):	Scanning electron microscopy (SEM):
Introduction, experimental setup, heat	Introduction, principle and instrumentation,
capacity, glass transition temperature,	sample preparation, scanning process, image
crystallization, melting, determination of	formation and applications of SEM.
percent crystallinity.	
Differential Thermal Analysis (DTA):	Transmission electron microscopy (TEM):
Introduction, experimental procedure,	Introduction, principle and instrumentation,
advantages and disadvantages of DTA.	sample preparation, advantages/disadvantages
Measurements of average molecular	and applications of TEM.Atomic force
weights: Osmometry, viscometry, light	microscopy (AFM): Introduction, principle,
scattering, and gel permeation	imaging modes, topographic image,
chromatography. Practical significance of	advantages/disadvantages and applications of
polymer molecular weight.	TEM.Attenuated total reflectance (ATR)
	spectroscopy: Introduction, principle, sampling
	method, crystal methods for ATR, factors
	affecting the spectrum, sampling: liquid and
	solid sampling. Applications.
	Photoacoustic spectroscopy: Introduction,
	principle, photoacoustic effect, advantages and
	limitations of photoacoustic spectroscopy,
	examples and applications of photoacoustic
	spectroscopy.

	1 Viscosity	1.	Viscosity: Viscosity of air
	Determination of molecular radius		by Rankine`s method.
	of glycerol by viscosity		
PG75P401C:	measurements.		
Lab Course in		2.	Solubility: Variation of
Physical Chemistry	2. Solubility		solubility of $Ca(OH)_2$ in
	Variation of solubility of Ca(OH) ₂		NaOH solution and hence
	in NaOH solution and hence		determination of the
	determination of the solubility		solubility product of
	product of Ca $(OH)_2$.		Ca(OH) ₂ .

 3. Thermochemistry a) Heat of neutralisation of HCl and CH₃COOH and their relative strength. b) Heat of reaction (precipitation/formation) of BaSO₄. c) Heat of transition of Glauber's salt (Na₂SO₄.10H₂O) 	3.	Thermochemistry : (i) Heat of reaction (precipitation/formation) of BaSO ₄ . (ii) Heat of transition of Glauber's salt (Na ₂ SO ₄ .10H ₂ O)
4. Refractometry Comparison of Mixture of unknown composition (including the case of salt solution)	<mark>4.</mark>	Surface Tension: Critical micelle concentration of a soap molecule. (e.g., Potassium laureate).
 5. Absorptiometry a) Dissociation constant of a weak acid b) Absorptiometric titrations of Fe(II) with KMnO4 	5.	Potentiometry: Determination of degree of hydrolysis and K_h of aniline hydrochloride
 6. Electrolytic Conductance a) Conductometric titrations: acid mixtures Vs NaOH i) Acetic acid + hydrochloric acid mixture Vs NaOH ii) Oxalic acid + hydrochloric acid mixture Vs NaOH b) Conductometric titrations: Sodium acetate (or oxalate Vs 	6.	Polarimetry: Kinetics of inversion of sucrose and determination of catalytic coefficient.
 NaOH) c) Conductometric titrations: HCl+NH4Cl Vs NaOH 7. EMF of Cells a) Heat of reaction and K_{eq} of the reaction between metallic zinc and pb (NO₃)₂ solution b) Estimation of halides in a mixture 	7.	Cryoscopy: Determination of activities of electrolytes and non- electrolytes using cryoscopy method.
c) Degree of hydrolysis and K _h of aniline hydrochloride	<mark>8.</mark>	Spectrophometry: Investigation of complex formation between Fe ⁺³

8.Polarimetry Kinetics of inversion of sucrose and determination of catalytic coefficient.	and salicylic acid and determination of empirical formula, stability, ∆G value calculation and pH effects.
9. Computer applications The students will be taught to learn how to operate a PC and how to run standard programs and packages such as MS-WORD, EXCEL, ORIGIN, SIGMA PLOT, CHEM SKETCH etc. and solve chemistry	 Glass transition temperature: Determination of glass transition temperature by dilatometer.
	10. Solid state: To determine the electron-phonon coupling constant of copper

	1. Surface Tension	1.	Surface
	a) Comparison of cleansing powers of two detergent samples.b) Comparison of a mixture of two liquids		Tension: Comparison of cleansing powers of two detergent samples.
PG75P402C: LAB COURSE IN PHYSICAL	 2. Phase Equilibria a) Phase diagram of naphthalene and diphenyl system. b) Phase diagram of acetamide and salicylic acid or picric acid and benzene. 	2.	Phase Equilibria : Phase diagram of naphthalene & diphenyl system, acetamide & salicylic acid and picric acid and benzene systems.
CHEMISTRY	 3. Electrolytic Conductance a) Conductometric titrations: Acid mixtures Vs NaOH i) Acetic acid + oxalic acid mixture Vs NaOH ii) Nitric and sulphuric acid mixture Vs NaOH b) Conductometric titrations: H₂SO₄ + CH₃COOH + CuSO₄ Vs NaOH 	<mark>3.</mark>	Conductance: Determination n of the ionic conductance of Cu ²⁺ at infinite dilution by Hittorf's method.

 4. Reaction Kinetics a) Decomposition of H₂O₂ catalysed by iodide ions. b) Iodination of acetone c) Study of kinetics of hydrolysis of tertiary butyl halide d) Saponification of ethyl acetate by titration method and conductometric method. e) Chromic acid oxidation of 2-propanol and determination of i) effect of addition of Mn (II) ii) substituent effects oxidation of benzyl alcohols. 	4.	Reaction Kinetics: Studying the kinetics of photodegradation of indigo carmine (IC) using ZnO/TiO ₂ as photocatalyst and study the effect of ZnO/TiO ₂ and IC on the rate of photodegradation.
 5. EMF of Cells a) Titration of HCl + CH₃COOH with NaOH b) Stability of the complex Ag (NH₃)₂ 		
(concentration cells)6. Solubility	5.	Potentiometry: Stability of the complex Ag(NH ₃) ₂ (concentration cells)
 a) Variation of solubility of potassium hydrogen tartarate with ionic strength involving a common ion and determination of mean ionic activity coefficients. b) Influence of ionic strength on the solubility of CaSO₄ and determination of its thermodynamic solubility product and mean ionic activity. 	6.	Solubility: Influence of ionic strength on the solubility of $CaSO_4$ and determination of its thermodynamic solubility product and mean ionic activity.
 7. Cryoscopy A study of complex formation between mercury and potassium halides. 8. Mobilities of ions Determination of the ionic 	7.	Cryoscopy: A study of complex formation between mercury and potassium
conductance of Cu^{2+} at infinite dilution by Hittorf's method.		halides using cryoscopy method.
9. Computer applications The students will be taught to operate a PC and how to run standard programs and packages such as MS-WORD,	8.	Mobilities of ions: Determination of the ionic conductance of Cu ²⁺ at infinite dilution by Hittorf's method.

EXCEL, ORIGIN, SIGMA PLOT,	9. Solid State: To determine
CHEM SKETCH etc. and solve	the energy gap of
chemistry problems. Problems will be	semiconductor by resistivity
taken preferably from physical	measurement using four
chemistry for plotting first and second	probe method.
derivative curves, linear plots etc.	
Problems from chemical kinetics,	
polymer chemistry, analytical	
chemistry, electrochemistry,	
spectroscopy etc. will be solved.	
1 17	
	10. Potentiometry:
	Determination of Hammet
	constant of ortho-, meta-
	and para–amino/nitro
	benzoic acid by pH
	measurements.

	1. Surface TensionMolecularsurfaceenergyand	1.	Surface Tension : Molecular surface energy and
	association factor.		association factor.
	2. Phase Equilibria	2.	Phase Equilibria: Formula
	a) Formula of the complex formed		of the complex formed
	between copper ions and ammonia		between copper ions and
	by distribution method.		ammonia by distribution
	b) Phase diagram of a three-component		method.
PG75P403C:	system: water, benzene and ethanol		
LAB COURSE IN	or acetic acid, water and chloroform or benzene.	2	Defue atometry
PHYSICAL	or belizene.	J .	Refractometry: Ionization constant of bromophenol
CHEMISTRY	3. Thermochemistry		blue.
	Stepwise heat of neutralization of		olde.
	polybasic acid	4.	Reaction Kinetics: Kinetics
	1 5		of oxidation of 2-propanol
	4. Refractometry		by chromic acid and
	Molar refraction of a solid substance		determination of effect of
	by dissolving it in a solvent.		addition of Mn (II) on the
			reaction rate.
	5. Absorptiometry		
	a) Investigation of complex formation	<mark>5.</mark>	Reaction Kinetics:Studying
	of absorptiometry (e.g. Fe (III)		the kinetics of reaction

	 salicylic acid, formula, stability constant, free energy and pH effects Fe (III)- sulfosalicylic acid and Ni-1,10-Phenanthroline). b) Composition of Cu(II)and Fe(III) solution by photometric titration with EDTA c) Ionization constant of bromophenol blue. 	between CAT and indigocaramine spectrophotometrically and determination of rate constant
H e	ectrolytic conductance Equivalent conductance of a weak electrolyte (eg.aceticacid, formic acid)using Kohlrausch's law	6. Potentiometry: Transport number of Ag ⁺ and NO ₃ ⁻ in solution (concentration cells)
a	eaction Kinetics a) Chromic acid oxidation of 2- propanol and determination of i) order ii) effect of added oxalic acid b)Oxidation of benzyl alcohols by Chromic acid	 Viscosity:Effect of temperature on the viscosity of the liquid Viscosity of air by Rankine`s method.
8. E a	 b) Decomposition of oxalic acid in solution photosensitized by uranyl sulphate. MF of cells a) Transport number of Ag⁺ and NO³⁻ in solution (concentration cells) b) Determination of the molecular state 	8. Solid state:Determination of magnetic susceptibility of paramagnetic substance by Quinke's method
c	 and the given calculation of the association/dissociation constant of the given solute c) Determination of Hammet constant of ortho-, meta- and para-amino/nitro benzoic acid by pH measurements. 	9. Solid state: Determine the relative integrated intensities of ZnS by Debye Scherrer pattern.
The s and h pack. ORIC SKE	Omputer applications students will be taught to operate a PC now to run standard programs and ages such as MS-WORD, EXCEL, GIN, SIGMA PLOT, CHEM TCH etc. and solve chemistry lems. Problems will be taken	10.Computer applications : The students will be taught to operate a PC and how to run standard programs and packages such as MS-WORD, EXCEL, ORIGIN, SIGMA PLOT, CHEM SKETCH etc. and solve chemistry problems. Problems will be taken preferably from physical

plottin linear kineti chemi	rably from physical chemistry for ng first and second derivative curves, plots etc. Problems from chemical ics, polymer chemistry, analytical istry, electrochemistry, spectroscopy vill be solved	chemistry for plotting first and second derivative curves, linear plots etc. Problems from chemical kinetics, polymer chemistry, analytical chemistry, electrochemistry, spectroscopy etc. will be solved.
		ee. wii be solved.

Project work	Project Work
It may include in-plant training in	The project work may include
	0

THIR	RD SEMESTER (ANALYTICAL CH	EMISTRY SPECILIZATION)
PG75T301D: Instrumental Methods of AnalysisUNIT- I Introduction to Analytical Chemistry Analytical Chemistry, Classification of Analytical Methods, Advantages and disadvantages of the methods, Steps in Analysis, Selectivity, Sensitivity and detection limits . Accuracy and Precision, Weighing errors, Weighing the sample, Filtering, Drying, Measuring volume, Calibration of Burette and Pipette. Basic Laboratory operations, Sampling, Weighing, Drying, Dissolving, Acid treatment, Flux treatment, Decomposition of organic matter, Precipitation, Formation of precipitate. Properties of precipitate, Particle size, Colloidal state, Coprecipitation, Post precipitation, Surface adsorption, Occlusion. Types of precipitates, Types of precipitating agents, General rules for performing quantitative determinations, Safety in laboratory.	UNIT-I Optical Methods: Atomic absorption spectrometry: Theory, instrumentation, different types of nebulizers, non flame techniques, electrothermal vapouriser, cold vapour AAS determination of mercury, interferences, differences between AAS and flame photometry and analytical applications of AAS. Emission Spectroscopy: Inductively coupled plasma optical emission spectrometry-theory and application Molecular Luminescence Spectroscopy: Theoretical basis for fluorescence and phosphorescence, instrumentation, factors affecting fluorescence, its applications in quantitative analysis and in the study of biomolecules. X-ray fluorescence elemental analysis.	
	UNIT- II Redox Titrations Equilibrium constants for Redox reactions - Electrode potentials in equilibrium systems, Calcuulation of equilibrium constant, Redox titration curves- Formal potentials, Feasibility of Redox titrations, Detection of end points, Redox indicators, Theory, Choice of Indicators, Sample preparation, Pre- reduction and Pre oxidation, Karl – Fischer reagent for water determination and applications. Precipitation Titrations: Titration curves, Feasibility of precipitation titrations, Factors affecting titrant and analyte concentration, completeness of reaction, Titrants and Standards, Indicators for precipitation titrations involving silver nitrate, The Vohlard, the Mohr and the Fajan's methods, Typical Applications	unity sis. UNIT-II Analytical methods of analysis: General discussion, coulometry at controlled potential, apparatus and general technique, applications, coulometric titrations (amperometric coulometric): Principles, apparatus, comparison of coulometric titrations with conventional titrations, automatic coulometric titrations and applications. Amperometry: Principle, titrations, advantages and limitations and applications. Ion selective electrodes: Glass ion selective electrodes, rystalline solid state ion selective electrodes. Supercritical fluid chromatography (SFC): Properties of supercritical fluids, instrumentation and operating variables, comparison of SFC with other types of chromatography and applications.

UNIT- III		UNIT-III
Complexometric Tit	rations	Analytical methods-II:
1	reactions, stability of	Polarography: Theory of classical polarography,
	g agents. EDTA - Acidic	polarograms, polarographic currents. Halfwave
	tes with metal ions.	potential, oxygen interference, advantages and
	ions involving EDTA.	limitations. pulse polarography and applications
	titration curves. Effect of	<mark>of polarography.</mark>
	. Factors affecting the	Electrogravimetric analysis: Theory, apparatus,
1	ves. Completeness of	deposition and separation, electrolytic
	for EDTA Titrations,	separation of metals and applications.
5	n indicators Titration	Electrophoresis: Theory and classification,
	EDTA- Direct, Back and	factors influencing the
1	itration's, indirect ration's of mixtures,	mobility-macromolecular size and charge,
	and Demasking agents.	interaction with supporting electrolyte, pH and
	of EDTA titration's -	concentration discontinuities. Factors affecting
VI 11	Aluminum in antacid.	electrophoretic phenomena–electrolysis,
Magnesium and Zinc		electroosmosis, temperature and supporting
Wagnestum and Zme	III a WIIXture.	media. Instrumentation. Methodology:
		Preparation of gels-staining and destaining.
		Capillary electrophoresis methods: Capillary
		zone electrophoresis and capillary gel
		electrophoresis. Light-scattering methods:
		Nephelometry and turbidometry: Principle,
		instrumentation and applications.

	UNIT- IV	UNIT-IV
	Paper, Column and Elution	Analytical methods–III
	Chromatography	Thermal method of analysis: Introduction.
	i) Paper Chromatography: Definitions, Theory	Thermogravimetric analysis (TGA): Types of
	and Principles. Techniques of paper	thermogravimetric analysis, principles, factors
	chromatography, Ascending chromatography,	affecting the results, heating rate, furnace,
	Descending Chromatography, Radial Paper	instrument control/data handling.
	Chromatography, Two Dimensional Paper	Instrumentation and applications.
	Chromatography, Methodology - Choice of	Differential thermal analysis (DTA): Theory,
	Paper, Choice of Solvent, Preparation of	variables affecting the DTA curves, differences
	Sample, Spotting, Development, Drying	between TGA and DTA, general principles.
	Conventional Column Chromatography	Instrumentation and applications.
	and Applications :	Differential scanning calorimetry (DSC): Basic
	High Pressure Liquid Chromatography,	principle, differences between DTA and DSC.
	(HPLC) Apparatus, Solvent Delivery	
	Systems, Pumps, Sample, injection System,	Instrumentation, power compensated DSC, heat
	Column Packing, Detectors used in HPLC,	flux DSC and applications.
	Performance Method, Materials, Advantages	Thermomechanical analysis and dynamic
		mechanical analysis.
		Voltammetry: Fundamentals of voltammetry.
	Applications of HPLC	Cyclic voltammetry: Principles and
	Elution Channets	applications.
	Elution Chromatography	Stripping analysis: Stripping voltammetry, basic
	Theory and principle of size exclusion	principles, electrodes used for stripping
	chromatography, experimental techniques for	<mark>analysis, apparatus for stripping analysis</mark> ,
	gel filtration chromatography (GfC) and Gel-	applications and determination of lead in water
	permeation chromatography methods.	by voltammetry.
	(GPC) Materials for packing - factors	
	governing column efficiency, methodology	
	and applications	
	Affinity Chromatography :Introduction,	
	theory, stationary phase, preparation of	
	column, separation of antigens	
PG75P301D:	1. Sodium carbonate and sodium bicarbonate	1. Nephelometric/turbidimetric determination
Lab Course in	in baking powder by acid base titration.	of sulphate/phosphate in ground water
Analytical	2. Calcium in lime stone by redox titration	samples.
Chemistry-I	3. Calcium in milk powder by EDTA method	2. Determination of calcium in milk powder
	4. Copper in alloy by iodometric method	
	5. Vitamin C by iodometric method	using EDTA.
	6. Flame photometry	3. Separation and determination of chloride and
	7. Iodine value of an oil sample	bromide on an anion exchanger.
	8. Saponification of oil sample	4. Cation exchange chromatographic separation
	9. aluminium and magenisium in antacids by	of cadmium and zinc and their estimation by
	EDTA titrations.	EDTA titration.
	10. Separation technique (i)Thin layer	
	chromatography	5. Analysis of a mixture of iron(II) and iron(III)
	11. Preparation of tris (oxalato) ferrate	by EDTA titration using <i>p</i> H control.
	(III) and estimate the metal ion.	
		6. Evaluation of the composition of
		Fe(II)–1,10-phenanthroline complex by
		spectrophotometry.
		 Colorimetric determination of Ti(IV) using
		H_2O_2 .

PG75T302D: Molecular Spectroscopy	UNIT-I Basic concepts and Introduction: Properties of electromagnetic radiation: Wave property- interference, diffraction. Particle property- Photoelectric effect. Regions of the electromagnetic spectrum, energies corresponding to various kinds of radiation. Interaction of electromagnetic radiation with matter (absorption,emission, transmission, reflection, dispersion, polarisation and scattering.) General application Electronic spectroscopy: Molecular electronic absorption spectroscopy.(UV-Visible) Electronic spectra of diatomic molecules, electronic transitions, selection rules, assignment of transition band intersities, substituent and solvent effect, change transfer transitions, Application to organic and inorganic molecules.	UNIT–I Basic concepts, Electronic Spectroscopy and Mass Spectrometry: Properties of electromagnetic radiation. Wave property: Interference and diffraction. Particle property: Photoelectric effect. Regions of the electromagnetic spectrum, energies corresponding to various kinds of radiation. Interaction of electromagnetic radiation with matter (absorption, emission, transmission, reflection, dispersion, polarisation and scattering). General application. Electronic spectroscopy: Molecular electronic absorption spectroscopy (UV–Visible), electronic transitions, selection rules, assignment of transition, band intersities, substituent and solvent effect and change transfer transitions. Application to organic and inorganic molecules. Mass Spectrometry: Ionization and mass analysis. Fragmentation: Principles, odd electron (OE ⁺⁺) and even electron (EE ⁺) ions, molecular ion and base peak, nitrogen rule, metastable ions. Isotope effects in chloro and bromo compounds. Fragmentation of inorganic and oraganic
	UNIT-II Vibrational spectroscopy: Infrared spectroscopy-Vibrational energy levels, infrared spectra of diatomic and polyatomic molecules, Normal modes of vibration, force constant, selection rules, anhormonicity, the vibration-rotation spectroscopy. Infrared spectra of simple molecules and coordination compounds, changes in infrared spectra of donor molecules upon coordination (N,N-dimethylacetamide, urea, DMSO, pyridine N-oxide, ammine, cyano, cyanato and thiocyanato complexes), mono and multinuclear carbonyl complexes, nitosyls, phosphine and arsine complexes. Change in spectra accompanying change in symmetry upon coordination (NO3, ⁻ , SO4 ²⁻ , NO2 ⁻ , and CIO4), hydrogen bonding, instrumentation including FTIR. Raman spectroscopy: Theory, relation with I	UNIT–II Vibrational Spectroscopy: Vibrational spectroscopy: Infrared spectroscopy: Vibrational energy levels, infrared spectra of diatomic and polyatomic molecules, normal modes of vibration, force constant, selection rules, anhormonicity, the vibration–rotation spectroscopy. Infrared spectra of simple molecules and coordination compounds, changes in infrared spectra of donor molecules upon coordination (N,N–dimethylacetamide, urea, DMSO, pyridine N–oxide, ammine, cyano, cyanato and thiocyanato complexes), mono and multinuclear carbonyl complexes, nitrosyls, phosphine and arsine complexes. Change in spectra accompanying change in

R spectroscopy, resonance Raman stimulated hyper and inverse Raman effects. Experimental techniques, structure determination from I R and Raman spectra	symmetry upon coordination $(NO_3^-, SO_4^{2-}, NO_2^-, and ClO_4^-)$, hydrogen bonding. Instrumentation including FTIR. Raman spectroscopy: Theory, relation with IR spectroscopy, resonance Raman stimulated hyper and inverse Raman effects. Experimental techniques, structure determination from IR and Raman spectra.
UNIT-III Magnetic Resonance spectroscopy: Nuclear Magnetic Resonance spectroscopy. Magnetic properties of nuclei, population of energy levels, the Larmar precession, relaxation processes, Chemical shift, shielding mechanism, spin-spin interactions, rules governing the interpretation of first order spectra, effect of chemical exchange on spectra. Analysis of complex NMR spectra, 1H nmr spectra of organic molecules and complex metal ligands, NMR studies of nuclei other than proton, ¹³ C (including heteronuclear coupling with other nuclei viz 19F and ³¹ P), ¹⁹ F, ³¹ P, ¹¹ B, ¹⁵ N. Spectra of paramagnetic complexes, contact shift, double resonance technique, shift reagents, Instrumentation including FT nmr.	UNIT–III Magnetic Resonance spectroscopy: Nuclear magnetic resonance spectroscopy: Magnetic properties of nuclei, population of energy levels, the Larmor precession, relaxation processes, chemical shift, shielding mechanism, spin–spin interactions, rules governing the interpretation of first order spectra, effect of chemical exchange on spectra. Analysis of complex NMR spectra, ¹ H–NMR spectra of organic molecules and complex metal ligands. Spin–systems: First order and second order patterns. Long range coupling : Spin decoupling, CIDNP and NOE. NMR shift reagents. NMR studies of nuclei other than proton, ¹³ C–NMR (including heteronuclear coupling with other nuclei viz., ¹⁹ F and ³¹ P), ¹⁹ F, ³¹ P, ¹¹ B, ¹⁵ N. Spectra of paramagnetic complexes, contact shift, double resonance technique. Instrumentation including FT–NMR.
UNIT-IV Electron Paramagnetic Resonance (EPR) Spectroscopy: Basic principles, Selection rules, intensity, width, position of spectral line, multiplet structure of EPR spectra, hyperfine interaction, spin-orbit coupling, zerofield splitting and Kramer's degeneracy, rules for interpreting spectra, factros affecting the magnitude of values. Instrumentation. Applications to the study of free radicals, Coordination compounds, biological studies, rate of electron exchange reactions Mössbauer Spectroscopy: Introduction, Principles, conditions for Mössbauer spectroscopy, parameters from	UNIT–IV Electron Paramagnetic Resonance and Mössbauer Spectroscopy: Electron Paramagnetic Resonance (EPR) Spectroscopy: Basic principles, selection rules, intensity, width, position of spectral line, multiplet structure of EPR spectra, hyperfine interaction, spin–orbit coupling, zerofield splitting and Kramer's degeneracy, rules for interpreting spectra, factros affecting the magnitude of values. Instrumentation. Applications to the study of free radicals, coordination compounds, biological studies and rate of electron exchange reactions.

PG75P301D: Lab Course in Analytical Chemistry–I	Mossbauer spectra, isomer shifts, electric quadrupole interaction, magnetic interactions, Mossbauer spectrometer, applications, Fe3(CO)12, Prussion blue, Oxyhemerythrin, Hexacyanoferrates, Nitropruside, Tin halides. I. Separation Techniques : Paper chromatography - Qualitative separation of given mixture containing amino acids. III. Estimations of essential metabolites: 1. Glucose by a) By DNS method b) Fehling's solution method c) Sugar in presence of one another 2. Cholesterol from Blood by Spectrophotometry. 3. Iron a) from Blood Serum by Spectrophotometry. b) in Mustard seeds by Spectrophotometry. 4. Phosphorus present in peas. 5. Conductometric titrations : a. Sodium acetate with HCl. b. NH ₄ Cl with NaOH. c. HCl, CH ₃ COOH and CuSO ₄ .	 Mössbauer Spectroscopy: Introduction, principles, conditions for Mössbauer spectroscopy, parameters from Mossbauer spectra, isomer shifts, electric quadrupole interaction, magnetic interactions, Mossbauer spectrometer. Applications in structure determination of Fe₃(CO)₁₂, Prussian blue, oxyhemerythrin, hexacyanoferrates, nitropruside, tin halides 1. Chromatography: (i) Paper chromatography: Qualitative separation of amino acids in a given mixture (ii) Column chromatography: Separation of plant pigments 2. Conductometric titrations: (i) Sodium acetate with HCl (ii) NH₄Cl with NaOH (iii) HCl, CH₃COOH and CuSO₄ 3. Estimation of iron in razor-blade by potentiometric & visual titration using sodium vanadate. 4. Assay of iron in pharmaceutical preparation by visual & potentiometric titrations. 5. Determination of aluminium and magnesium in antacids by EDTA titration.
PG75T303D: Selected Topics in Analytical Chemistry-I	UNIT - I Flame Photometry and Fluorometry Basic principles of flame photometry, Standard addition method, Internal standard method, Interferences, Applications of flame photometry, Instrumentation and applications.Difference between atomic absorption and flame emission spectroscopy, Advantages of atomic absorption spectroscopy over flame emission spectroscopy. Plasma emission source. Inductively coupled argons plasma, Direct current argon plasma. Principles of fluorimetry, Instrumentation, Factors affecting fluorescence, its applications in quantitative analysis. Atomic Absorption Spectroscopy: Theory, Instrumentation, different types of nebulizers, non flame techniques, electro thermal vapourisers, cold vapour AAS,	UNIT–I Sensors Sensors: Membrane electrodes, classification and properties, principle, membrane potential, sensors types: Crystalline, liquid membrane and enzyme electrodes, gas sensors, voltammetric sensors, optical sensors and thermal sensors. Biosensors: Introduction to biosensors, characteristics of an ideal biosensor. Basic electrochemical principles and measurement system. Enzyme based electrochemical biosensors: Theory and applications of glucose, urea and alcohol biosensors. Transducer technology, enzyme based calorimetry, enzyme reactors with HPLC. Enzyme based micro electrodes. Analytical and biological applications of sensors.

interferences, calibration graph, analytical applications. Comparison of AAS with AES.

UNIT -II Polarography and Amperometry

Polarography: Theory, Instrumentation, diffusion and limiting current, half wave potential, DME, Oxygen interference, methods of measurement of diffusion current, shape of polarographic maximum, Derivative polarography, applications.

Amperometric Titrations: Principle, methodology, apparatus, RPM, Swcessive titrations, Titrationn to zero current, Comparison with other methods.

Coulometry, Ion Selective Electrodes And Conductometry:

Coulometry; Fundamantal principles, apparatus, coulometers, constant current and controlled potential coulometry stripling analysis and applications.

Ion selective electrodes: Terminolgy, Types and constrction of ion selective electrode, glass electrode, solid state and precipitate electrodes, enzyme and gas sensing electrodes, glass microelectrodes and applications.

Conductometry: Introduction, Import and laws, Definition and relations, effect of dilution, conductance measurements and applications.

UNIT -III

Thermoanalytical Techniques

Introduction. thermogravimetric analysis(TGA), types of thermogravimetric analysis, principle and method. Automatic thermogravimetric analysis, instrumentation, types of recording thermobalances, sample holders. factors affecting results and applications. Isothermal analysis. Differential thermal analysis (DTA), principle of working, theory and instrumentation. Simultaneous DTA-TGA curves, factors affecting results and applications. Thermometric titration: introduction, apparatus and applications (Acid-base, precipitation, complexation, redox and non-aqueous titrations).

UNIT -IV Computational Chemistry

UNIT-II

Bioinorganic Chemistry:

Bioinorganic chemistry: Metal ions in biological systems, essential and trace metals, Transport and storage of dioxygen, haemoglobin, myoglobin, hemerythrin and hemocyanins. Electron transfer proteins: Cytochromes, iron–sulphur proteins.

Metalloproteins as enzymes: Carboxy peptidase, catalases, peroxidases, cytochrome P-450, superoxide dismutase, copper oxidases, vitamin B_{12} coenzyme, chlorophyll and its role in photosynthesis, photosystems-I & II, nitrogen fixation and metal complexes in medicine.

UNIT-III

Automated methods of analysis:

Automated methods of analysis: Overview, advantages and disadvantages of automated analyses, types of automatic systems, flow injection analysis, instrumentation, sample and reagent transport systems, sample injectors and detectors, separations in FIA. Dialysis and gas diffusion, principles of FIA, dispersion, applications, stopped flow methods, flow injection titrations, microfluidics, discrete automatic systems, robotics, discrete clinical analyzers and automatic organic elemental analyzers.

UNIT–IV

Computational Chemistry:

Computational Chemistry: Introduction to computers and computing, introduction to computer languages, programming in chemistry, developments in involving simple formulae in chemistry, Van der Waals equation, pH titration, radioactive decay.

Elementary structural features, bond angles and bond lengths, running standard programs and packages: Linear regression, X–Y plot, operational packages, MS word and MS Excel.

	Introduction to computers and computing, Introduction to computer languages, Programming in chemistry: Developments of programs in involving simple formulae in chemistry, vandar Waal's equation, Ph titration, radioactive decay. Elementary structural features, Bond angles and Bond lengths, Running standard programs and packages: Linear regression, X-Y Plot, Operational packages: MS word, MS Excel.	
PG75P303D: Lab course in Analytical Chemistry–III	 Separation Techniques : Column Chromatography; Separation of plant pigments Polarimetry Determination of specific rotation. 	 Analytical Chemistry–III Polarimetry: Determination of specific rotation of (i) cane Sugar solution (ii) cane sugar cane by inversion method (iii) cane sugar solution in presence of other sugar solution. Potentiometric Titrations: (i) analysis of mixture of halides (ii) determination of iron using potassium dichromate. Conductometric Titrations: (i) analysis of halides, (ii) determination of sulphates. PH Metric titrations: (i) Determination of strength of acids (ii) determination of strength of commercial phosphoric acid (H₃PO₄) by pH titration (iii) determination of soda ash in washing soda. Spectrophotometry: Analysis of waste water for (i) phosphate by molybdenum blue method (ii) ammonia-nitrogen by Nessler's method OR nitrite-nitrogen by NEDA method.
	FOURTH SEMESTER (ANALYT	ICAL CHEMISTRY)
PG75T401D : Pollution and Analysis	UNIT -I Soil and Fuel Analysis Soil analysis-Preparation of laboratory sam Measurement of pH and conductivity, acidic alkaline soil. Analysis of major constitute organic matter nitrogen sulphur sodi	and sodification, agrochemical pollution, urban ents- and industrial pollution, effects of soil

organic matter, nitrogen, sulphur, sodium,

potassium and calcium. Analysis of trace elements-

pollution and solutions for soil pollution.

Soil analysis: Preparation of laboratory

copper, molybdenum, zinc and boron. Fuel analysis-Definition and classification of fuels, characteristics of fuels. Sampling, proximate and ultimate analysis of coal, determination of calorific value. Liquid fuels-Determination of flash point, fire point, aniline point. Knocking of petrol and diesel octane and cetene numbers, carbon residue. Gaseous fuels- Analysis of coal gas, water gas, producers gas, gober gas and blast furnace gas. Relative merits of solid, liquid &gaseous fuels.

UNIT -II

Air Pollution and Analysis

Classification and properties of air pollutants. Emission sources, major emissions from global sources. Behaviour and fate of air pollutants -wet precipitation, dry deposition, interaction at the earth's surface, chemical reactions in the atmosphere, photochemical smog. Effects of air pollution on human health, vegetation and pollution sampling materials. Air and measurement- ambient air sampling, collection of gaseous and particulate air pollutants. Analysis of air pollutants. SO₂ -ambient air measurements, gas measurement chemiluminescent stack techniques.CO-NDIR, amperometric, FID & catalytic oxidation methods. Coulometric & chemiluminescent methods. Hydrocarbons-total and individual hydrocarbons by chromatographic methods. Particulates optical & mass measurement methods.

UNIT -III

Analysis of Ores, Minerals and Fertilizers

Composition, Properties and analysis of

Minerals and Ores: Heamatite, Pyrolusite, Dolomite, Chromate, Bauxite, Limestone, Zillmenite, Gypsum and Epsom.

a) Fertilizer analysis : Types, analysis of Nitrogenous Fertilizers,

Organic Nitrogenous, Phosphatic and Potassic Fertilizers.

b) Pesticide and Insecticide Analysis : Introduction, Classification and analysis of DDT, Gammexane, endosulphon, Zinaf, Ziram, Malathian, Thiram, Thiometon, Simazine and Chloridane.

UNIT – IV

Metals and Alloy Analysis: Steel, Cu-Ni Alloy, Solder, Bronze, Brass, Aluminum alloy, Ferroalloys of Silicon, Molybdenum, Chromium Titanium and Vanadium Analysis of structural materials: Cement and Glass sample, measurement of pH and conductivity, acidic and alkaline soil. Analysis of major constituents: Organic matter, nitrogen, sulphur, sodium, potassium and calcium. Analysis of trace elements: Copper, molybdenum, zinc and boron.

UNIT–II Air Pollution and Analysis:

pollutants: Classification Air and properties of air pollutants, emission sources, major emissions from global sources. Behaviour and fate of air pollutants, wet precipitation, dry deposition, interaction at the earth's chemical surface. reactions in the atmosphere, photochemical smog, effects of air pollution on human health, vegetation and materials.

Air pollution sampling and measurement: Ambient air sampling, collection of gaseous and particulate air pollutants. Analysis of air pollutants: SO₂-ambient air measurements, stack gas measurement chemiluminescent techniques, CO-NDIR, amperometric, FID & catalytic oxidation methods. Coulometric & chemiluminescent methods. Hydrocarbon measurement: Total and individual hydrocarbons chromatographic by methods, particulates optical & mass measurement methods.

UNIT–III Water Pollution and Analysis:

Sources of water pollution, classification of water pollutants: Organic, inorganic, sediment, thermal and radioactive materials, effects and solutions. Analysis of water parameters: Hardness, carbonate, bicarbonate, chloride, sulphate, fluoride, sodium, potassium, iron, chromium, manganese, chlorine demand, dissolved oxygen, ciochemical oxygen demand and chemical oxygen demand.

	Analysis of Refractory materials: Fire Clay, Fluorspor.	UNIT–IV Noise and Radiation Pollution and analysis: Noise pollution: Concept of sound, noise and hearing problems, measurement of noise, sources of noise, effects of noise pollution. Regulation and control rules 2000 for noise pollution. Radiation Pollution: Sources, effects, protection from radiation pollution, disposal of radioactive waste. Analysis of radionuclides.
PG75P401D: Lab course in Analytical Chemistry.	 Solvent Extraction Determination of Iron by solvent extraction. Determination of molybdenum by thiocynate method Ion Exchange Method Separation of anions using anion exchange resin Separation of cations using cation exchange resin Separation of cations using cation exchange resin Separation of iron by ceric sulphate and dichromate Determination of stability constant of a complex IV. Analysis of ores: Hematite, Pyrolysite, Dolamite V. Organic Reagents: Separation and estimation of aluminium and magnesium. VI. Analysis of Fertilizers: Urea, Super phosphates. VII. Analysis of water for alkalinity and acidity by pH metric titrations. VIII. Determination of ammonia in Household cleaners by conductometric titrations. 	 Analysis of water for alkalinity and acidity by pH metric method Determination of strength of commercial phosphoric acid by pH titration Determination of ammonia in household cleaners by conductometric titrations. Determination of sodium and potassium in soil by flame photometry Determination of phosphate in domestic waste water by spectrophotometry. Analysis of mercury/lead in industrial effluents by spectrophotometry Determination of DO, BOD and COD of a waste water sample by titrimetry Determination of fluoride by spectrophotometric method Soil analysis
PG75T402D: Quality Control, Analysis of Food, Beverages and Pharmaceuticals	UNIT- I Quality Control and Assurance An introduction to quality control and quality assurance –Basic concepts, quality assurance , aspects of specification and tolerance, quality acceptance, sampling, reliability, cost aspects of	UNIT–II Analysis of Beverages, Food Preservatives and Adulterants: Introduction: Soft drinks, alcoholic drinks, tea, coffee and fruit juices. Analysis of Caffeine in coffee and tannin in tea,

quality decisions. Quality control in raw materials, production(in process), finished product. Current trends in quality control, ISO 9000 and ISO 14000 series. Laws related to quality control. Case studies of quality control in various industries such as plastics and polymers, fertilizers, agrochemicals, petrochemicals, dyes and pharmaceuticals.

UNIT - II

Radiochemical Methods of Analysis

Detection of nuclear radiation and counting devices. Radioactivity tracers principles and applications, isotopic dilution analysis, direct, inverse, special analytical applications, radiometric titration's, Neutron activation analysis, principle, instrumentation, applications and limitations, Radio chromatography, radio immunoassay Automated methods of analysis: Introduction, An overview of automatic instruments and instrumentation. Advantages and disadvantages of automatic analysis, unit operation in chemical analysis, types of automatic analytical systems. Flow.-injection analysis. Instrumentation-sample and reagent transport systems. Sample injectors and detectors, separations in FIA. Dialysis and gas diffusion, extraction principles of flow-injection analysis, Applications of flow-injection analysis. limited dispersion applications. Medium-Dispersion applications. Stopped Flow methods. Flow injection titrations. An automated system for mercury concentrations. Discrete automatic systems. Automatic sampling and sample definition of liquids and gases. Robotics. The centrifugal fast scan analyzer. Automatic organic elemental analyzers. Analysis based on multilayer films. General principles. Film structures, Instrumentation, reflective photometer, potentiometry, performance and applications Automated methods of Analysis.

UNIT- III

Water Analysis

Types of pollution, Sources of water pollution, Classification of water pollutants- Oragnic, Inorganic, Sediment, Thermal and radioactive materials, Analysis of water parameters- hardness , carbonate, bicarbonate, chloride, sulphate, fluoride, sodium, potassium, Iron, Chromium, Manganese, Chlorine demand, Dissolved oxygen, Biochemical oxygen demand, Chemical oxygen demand.

UNIT-IV

Analysis of Beverages

Introduction - Soft drinks, Alcoholic drinks, Tea, Coffee and Fruit juices, Analysis of Ceffeine in Coffee and Tea, Detection of Chicory in coffee, Chloral hydrate in Toddy. Estimation of methyl alcohol in alcoholic beverages, Poisonous materials derived from containers. detection of chicory in coffee, chloral hydrate in toddy. Estimation of methyl alcohol in alcoholic beverages, poisonous materials derived from containers. Food preservatives like sodium benzoate, sodium propionate, sodium sulphate, potassium metabiosulphate (qualitative and quantitative analysis).

Food Adulterants: Artificial sweeteners like saccharin and dulcin, coal tar dyes and non-permitted colours and trace metals, detection and estimation.

UNIT-III

Drugs and Pharmaceutical Analysis:

Antibiotics: Introduction, classification, structure elucidation, stereochemistry and reaction mechanism of pencillins, tetracycline and chloramphenical.

Analysis of common drugs:

Analgesics:Aspirinandparacetamol.Antihelmentics:Mebendazole.Antiallergies:Chlorpheneraminemalleate.Anti–inflammatory agents:Oxyphenbutazone.Antimalarials:primaquinephosphate.Antituberculosists:Isoniazid(INH).Narcotics:Nicotine,morphine.Sedatives:Diazepam.Vitamins:A, B1, B2, B6, C & folic acid.

UNIT-IV

Analysis of dairy products and edible oils:

Chemistry, principles and analysis of liquids (edible): (i) general composition of edible oils, qualitative tests to purity, rancidity of fats and oil, estimation of rancidity, hydrogenated fat, tests for common edible oils like groundnut oil, castor oil, cottonseed oil & mustard oil. Tests for adulterants like argemoss oil & mineral oils and (ii) analytical principles in the analysis of dairy products composition of milk and milk products, alcohol test, fermentation, dye reduction. Methylene blue and resaturin tests. Tests to distinguish between buffed olemargarine, phosphate tests for efficacy of pasteurization. Analysis of fat content,

PG75P402D:	Analysis of Food Preservatives and Adulterants: Food preservatives like Sodium benzoate, Sodium propionate, Sodium sulphate, Potassium metabiosulphate (Qualitative and Quantitative detection estimation) Food Adulterants : Artificial sweeteners like Seccharin and Dukin, Detection and estimation of Coal tar dyes and Non- Permitted colours and trace metals.	 mineral in milk and butter. Estimation of added water in milk. 1. Analysis of medicines: APC tablet,
Lab course in Analytical Chemistry.	 Determination of Iron. Determination of Zirconium. Determination of Copper. Determination of pKa value of an Indicator. Determination of fluoride. 	paracetomol, sulpha drugs by potentiometry/spectrophotometry/titri metry
	 6. Determination of Cr⁺⁶ and Mn²⁺ in a mixture. II. pH Metric titrations: 7. Determination of strength of acids 8. Determination of strength of commercial phosphoric acid (H₃PO₄) by pH titrations III. Analysis of Alloys: Solder, Steel, Cuprinickel alloy 	 Assay of aspirin / caffeiene / phenacetin by spectrophoptmetry Determination of vitamin A in vanaspathi by UV spectrophotometry. Isolation of casein and lactose from mills
	 IV. Estimation of functional groups; Hydroxy, Amino, Nitro V. Analysis of body fluids: Determination of cholesterol in blood Determination of Glucose in blood, Determination of Uric acid in Urine, Determination of creatinine in Urine. VI. Analysis of Medicines: APC Tablet, Paracetomol, Sulladiazine VII.Food Analysis: Signification value of an oil Determination of iron in mustard sugar, Determination of ascorbic acid in tomato. Isolation of Caffeine from tea powder. Determination of benzoic acid in food products by titration with methanolic KOH in chloroform using Thymol Blue. VII. Soil Analysis. 	 milk 5. Food analysis: Determination of iron in mustard sugar, phosphorus in peas, ascorbic acid in tomato, benzoic acid in food products 6. Determination of iodine value of an oil sample 7. Saponification of an oil sample
PG75T403D: Selected Topics in Analytical Chemistry–II	 VIII. Son Analysis. UNIT - I Drug Design - A Rational Approach: 1. Introduction. 2. Concept of Lead compound-crude drugs and analogues. 3. Factors governing the drug design 4. Rational approach to drug design 5. Tailoring of drug 6. Study structure activity relationship 	UNIT– I Analysis of Biomedical samples: Composition of body fluids and detection of abnormal levels of certain constituents leading to diagnosis of disease. Sample collection and preservation of physiological fluids, analytical methods for the constituents of physiological fluids (blood, serum,urine). Blood–estimation of glucose, cholesterol, urea, haemoglobin and bilirubin. Urine: Urea, uric acid, creatinine, calcium phosphate, sodium,

	potassium and chloride. Biological
	significance, analysis and assay of
	enzymes (pepsin,
	monoaminoxide,tyrosinase), vitamins
	(thiamine, ascorbic acid, vitamin–A) and
	harmones (progesterone,oxytocin, insulin).
	Chemical, instrumental and biological
	assays to be discussed wherever necessary.
	Estimation of poisonous materials such as
	lead, mercury and arsenic in biological
	materials.
UNIT- II	UNIT-II
Analysis of Pharmaceuticals	
Antibiotics: Introduction, Classification, structure	Analysis of Ores, Minerals and
elucidation, Steriochemistry and reaction	Fertilizers:
mechanism of their action of their action of the	Composition, properties and analysis of
following.	minerals and ores: Heamatite, pyrolusite,
Pencillins, Aminoglycosides, Tetracyclin,	dolomite, chromate, bauxite, limestone,
Chloramphenical. Analysis of common drugs like	zillmenite, gypsum and epsom.
Aspirin, Paracetemol, Tetracycline,	
Iodomethacin, Warfarin odium .	Fertilizer analysis: Types, analysis of
	nitrogenous fertilizers, organic
Biomedical and Forensic Analysis	nitrogenous, phosphatic and potassic
Composition of body fluids and detection of	fertilizers.
abnormal levels of certain constituents leading to	
diagnosis of disease. Sample collection and	Pesticide and insecticide analysis:
preservation of physiological fluids, Analytical	introduction, classification and analysis of
methods for the constituents of physiological fluids	DDT, gammexane, endosulphon, zinaf,
(blood, serum, urine). Blood-Estimation of glucose,	ziram, malathian, thiram, thiometon,
cholesterol, urea, haemoglobin and bilirubin.	simazine & chloridane.
Urine- urea, uric acid, creatinine, calcium	
phosphate, sodium, potassium and chloride. Biological significance, analysis and assay of	
enzymes (pepsin, monoaminoxide, tyrosinase);	
Vitamins (thiamine, ascorbic acid, vitamin A) and	
harmones (progesterone, oxytocin, insulin).	
Chemical, instrumental and biological assays to be	
discussed wherever necessary. Forensic analysis:	
General discussion of poisons with special	
reference to mode of action of cyanide,	
organophosphates and snake venom. Estimation of	UNIT-III
poisonous materials such as lead, mercury and	Metals, Alloys and Cement Analysis:
arsenic in biological materials.	Steel Cy. Ni elley relder bronze bronz
	Steel, Cu-Ni alloy, solder, bronze. brass, aluminum alloy, ferroalloys of silicon,
	molybdenum, chromium, titanium and
Chemistry, Principles and Analysis of Liquids	vanadium. Analysis of structural materials:
(EDIBLE)	Cement and glass. Analysis of refractory
Chemistry, Principles and analysis of liqids	materials: Fire clay, fluorspar. Analysis of
(Edible) : (a) General composition of edible oils,	cement
(Lander, (a) Constant composition of cubic ons,	
Qualitative tests to purity, Rancidity of Fats and	

		1
	Tests for common edible oils like Groundnut oil, Castor Oil, Cottonseed Oil and Mustard Oil, Tests	
	for adulterants like Argemoss Oil and Mineral Oils.	
	b) Analytical principles in the analysis of diary	UNIT-IV
	products. Composition of milk and milk products,	Analytical procedures in refineries:
	alcohol test, Fermentation, Dye Reduction,	Analytical procedures in refineries.
	Methylene Blue and Resaturin tests. Tests to	Types of crude oil (sweet and sour),
	distinguish between Bufferl Olemargarine,	composition of crude cil, causes for
	Phosphate tests for efficacy of pasteurization.	corrosion in refinery (sulfidic &
	Analysis of fat content, Mineral in Milk and butter.	naphthenic acid) crude oil refining,
	Estimation of added water in milk.	fractional distillation (atmospheric and
	UNIT-IV	vacuum distillation). Purification processes
	Heame and Non Heame Systems: Transport and	(merox, alkylation, reformulation,
	storage of dioxygen- heme proteins, oxygen uptake,	hydrotreating, cracking etc.). Products of
	functions of haemoglobin, myoglobin, hemerythrin	refinery (naphtha, gasoline, diesel, furnace
	and hemocyanins, synthetic oxygen carriers. Electron transfer proteins- cytochromes and iron-	oil, lube oil etc.), residues of refining
	sulphur proteins-rubredoxins, ferredoxins and	processes (sulfur, pet coke). Specifications
	HIPIPs. Model compounds. Vitamin B_{12} and its	of gasoline, jet fuel and diesel in India and
	coenzyme. Synthetic model compounds.	abroad. Paraffins, iso-paraffins, olefins,
	5 5	naphthenes, aromatics.
		Analytical techniques used in crude oil and
		products evaluation: True boiling point
		distillation, spectroscopic evaluation (NIR
		& FTIR), density, viscosity, cloud point,
		pour point, PIONA analysis in gasoline,
		simulated distillation, GC–MS, HPLC,
		cetane number and octane number.
DC75D402D	Estimation of aluminium and magnesium.	1. Analysis of fertilizers: Urea, super
PG75P403D: Lab course in	II. Analysis of Fertilizers: Urea, Super phosphates. III. Analysis of water for alkalinity and acidity by	phosphates
Analytical	pH metric titrations. IV. Determination of ammonia in Household	2. Analysis of pyrolusite ore
Chemistry	cleaners by conductometric titrations.	3. Analysis of alloys: cupronickel and
	Analysis of Alloys: Solder, Steel, Cuprinickel alloy VI. Analysis of Medicines: APC Tablet, Paracetomol, Sulladiazine	bronze
		4. Analysis of cement
	VII. Soil Analysis.	5. Determination of (i) aluminium and
		magnesium in a mixture
		6. Analysis of Stainless steel-Ni
		gravimetrically using DMG, Fe volumetrically using Ce(IV), Cr
		volumetrically by persulphate
		oxidation,
		7. Analysis of body fluids: Determination
		of cholesterol, glucose in blood; uric
		acid, creatinine in urine .

PG75D404D: Project work*	It may include inplant training in Industries/short term work in other educational Institutions/ R & D organizations/ Data Mining/ Review of current literature/ theoretical methods/computer applications, etc. Experimental work may involve studies on synthesis/characterization/properties/ measurements/activities for reported/unreported research or any suitable combination thereof. In case of the students who will work outside the campus, the supervising staff member shall visit the place atleast once during the tenure and hence he/she may be eligible for TA/DA as per the University rules.	It may include in-plant training in industries/short term work in other educational institutions/R&D organizations/data mining/review of current literature/theoretical methods/computer applications etc. Experimental work may involve studies on synthesis/ characterization/properties /measurements/activities of reported/unreported research or any suitable combination thereof. In case of students who will work outside the campus, the supervising staff member shall visit the place at least once during the tenure and hence he / she may be eligible for TA/DA as per the University rules.

B. Elective		
PG75O302B:	UNIT–I	UNIT–I
Applied	Molecular Parameters, Isomerism and Prochirality:	Molecular Parameters, Isomerism and Prochirality:
Organic	Molecular Parameters: bond lengths, bond	Molecular Parameters: bond lengths,
Chemistry	angles, bond energies, bond polarity and dipole moment.	bond angles, bond energies, bond polarity and dipole moment.
	Geometrical and optical isomerism: E/Z, R/S	Geometrical and optical isomerism:
	nomenclature, Fischer, Sawhorse, Newmann	E/Z, R/S nomenclature, Fischer,
	projections. Enantiomers, diastereomers and	Sawhorse, Newmann projections.
	epimers,	Enantiomers, diastereomers and
	Prochirality: Homotopic, enantiotopic,	epimers,
	diastereotopic groups & faces and their	Prochirality: Homotopic, enantiotopic,
	reactivity.	diastereotopic groups & faces and their
	UNIT–II	reactivity.
	Organic Reactions:	UNIT–II
	Classification of organic reactions, mMethods	Organic Reactions:
	of identification, kinetic, non-kinetic methods,	Classification of organic reactions, mMethods of identification, kinetic,
	isotopic labeling techniques, intermediates,	non-kinetic methods, isotopic labeling
	cross over products and product proportions in	techniques, intermediates, cross over products and product proportions in
	different types of reactions.	different types of reactions.
	Named Reactions: Classification, aldol,	Named Reactions: Classification, aldol, dieckmann, Claisen–Schmidt and

	dieckmann, Claisen–Schmidt and similar carbanion addition reactions.	similar carbanion addition reactions.
	UNIT–III Chemistry of Heterocycles:	UNIT–III Chemistry of Heterocycles:
OR	Structure, synthesis, reactivity of the following heterocycles and their biologically important derivatives: (i) indole (ii) thiazole (iii) pyrimidine (iv) quinoline (v) furan (vi) thiophene and (vii) pyrrole.	Structure, synthesis, reactivity of the following heterocycles and their biologically important derivatives: (i) indole (ii) thiazole (iii) pyrimidine (iv) quinoline (v) furan (vi) thiophene and (vii) pyrrole.
	UNIT–IV Functional group Transformations: Multi step organic functional group inter conversions involving substitution, addition, eliminations, oxidation, reduction, etherification, hydrolysis and diazocoupling reactions.	UNIT–IV Functional group Transformations: Multi step organic functional group inter conversions involving substitution, addition, eliminations, oxidation, reduction, etherification, hydrolysis and diazocoupling reactions.
PG75O302C:	UNIT–I	UNIT–I
Applied Physical		
	Reaction Kinetics:	Reaction Kinetics:
Chemistry	Reaction Kinetics: A critical account of collision and transition state theories. Kinetics and Mechanism: Steady state approximation and simple examples relating kinetics to mechanism. Theories of unimolecualar reactions: RRKM theory. Isomerisation of methyl isocyanide. General features of fast reactions, study of fast reactions by flow method, relaxation method, flash photolysis and the nuclear magnetic resonance method. UNIT–II	Reaction Kinetics: A critical account of collision and transition state theories. Kinetics and Mechanism: Steady state approximation and simple examples relating kinetics to mechanism. Theories of unimolecualar reactions: RRKM theory. Isomerisation of methyl isocyanide. General features of fast reactions, study of fast reactions by flow method, relaxation method, flash photolysis and the nuclear magnetic resonance method. UNIT–II

constants.	Temperature dependence of free energy and equilibrium constants.
UNIT-III	and equinorium constants.
Electrochemistry:	UNIT-III
Introduction to electrochemistry, electrical Double	Electrochemistry:
Layer: Lippman equation, theories of electrical	Introduction to electrochemistry, electrical
double layer-Helmholtz-Perrin, Gouy-Chapman	Double Layer: Lippman equation, theories
and Stern theories. Effect of ions on zeta potential.	of electrical double layer-Helmholtz-
Activity of ions in solution: ion-solvent	Perrin, Gouy–Chapman and Stern theories.
interactions, ion-ion interactions and free energy of	Effect of ions on zeta potential. Activity of
ions in solution. Born model and modifications, solvation number and their determination. triple ion	ions in solution: ion-solvent interactions, ion-ion interactions and free energy of ions
formation and conductance minima.	in solution. Born model and modifications,
	solvation number and their determination.
	triple ion formation and conductance
	minima.
UNIT-IV	UNIT–IV
Introduction to Polymers:	Introduction to Polymers:
Basic Concepts: Monomers, repeat units, polymers	Basic Concepts: Monomers, repeat units,
and degree of polymerization. General	polymers and degree of polymerization. General classification of polymers,
classification of polymers, homopolymers,	homopolymers, copolymers, terpolymers,
copolymers, terpolymers, additon polymers and	additon polymers and condensation
condensation polymers with examples, tacticity, comparison between thermoplastics and	polymers with examples, tacticity,
thermosetting polymers.	comparison between thermoplastics and
Methods of polymer fabrications: Fabrication of	thermosetting polymers.
polymer films, solution casting, melt pressing, melt	Methods of polymer fabrications: Fabrication of polymer films, solution
extrusion and bubble blown. Fabrication of shaped	casting, melt pressing, melt extrusion and
polymer objects: compression molding, injection	bubble blown. Fabrication of shaped
molding, reaction injection molding, blow molding extrusion molding and calendaring. Spinning	polymer objects: compression molding,
industrial polymers: solution spinning and melt	injection molding, reaction injection
spinning.	molding, blow molding extrusion molding
Preparation, properties and commercial	and calendaring. Spinning industrial
importance;	polymers: solution spinning and melt spinning.
Vinyl polymers: polyethylene, polypropylene,	Preparation, properties and commercial
polystyrene, polytetrafluoroethylene, polyvinyl	importance;
chloride and polymethylmethacralate Polyesters: poly(ethylene terephthalate).	Vinyl polymers: polyethylene,
Polyamides: aramides (kevlar and nomex).	polypropylene, polystyrene,
Polyimides, Polysulphone, Polyurethanes and	polytetrafluoroethylene, polyvinyl chloride
polyureas.	and polymethylmethacralate Polyesters: poly(ethylene terephthalate).
Natural polymers: polyisoprenes, chitosan,	Polyamides: aramides (kevlar and nomex).
	Polyimides, Polysulphone, Polyurethanes
	and polyureas. chitosan,